
Abstract

In this thesis, we attempt to explain the origin of the universal, omni-
directional p−5 momentum spectra that are observed in numerous
environments throughout the heliosphere. The acceleration of these
particles appears to be insensitive to the local environment. In par-
ticular, this tail is observed during quiet-times in which shocks, for
example, are not present. As long as a background plasma with an
embedded turbulent magnetic field is present, this suprathermal tail
is observed. Diffusive shock acceleration, for example, is an improba-
ble candidate at creating these energetic particles as this mechanism
requires the presence of shocks. Also, this process does not naturally
create a favoured momentum spectral index of −5. We are therefore
lead to believe that these particles gain their energy in a stochastic
manner.

We present a new application of the so called “pressure balance”
concept, applying it to particles in the presence of large-scale com-
pressible turbulence. For the first time, we solve the resulting steady
state transport equation under pressure balance in the presence of ad-
vection, spatial diffusion, momentum diffusion, adiabatic cooling and
losses. For sensible choices of the free parameters, we both analyt-
ically and numerically solve the resulting transport equation in the
inner heliosphere and downstream of the termination shock. Under
our assumptions, we demonstrate that a p−5 spectrum can be created
under many different circumstances.
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Chapter 1

Introduction

1.1 History

The existence of high energy particles originating from space has been evident
for over a century. The discovery of such particles is attributed to Hess [1912]. A
discrepancy in the expected levels of radiation in the atmosphere led to his work.
It was assumed that the Earth was the primary source of such radiation, and
that the levels of this radiation should therefore decrease with increasing height
from the ground. It was thus that Hess made what is now a famous balloon flight
to measure the radiation levels at different altitudes. At first, his results were as
expected: the levels decreased with increasing height. However, after a height of
about 1.5 km, the levels began to increase considerably. Hess correctly deduced
that the source of this radiation was not terrestrial; that is, it must originate
from outer space. Furthermore, he concluded that the origin of the radiation
he detected was not solar in nature as the rate was not affected during a solar
eclipse. For this discovery, Victor Hess was awarded the Nobel Prize in Physics
in 1936.

Cosmic rays are so named because it was originally believed that they were
all gamma rays. However, in 1927, Jacob Clay determined that the cosmic ray
intensity varied with latitude, concluding that the majority of cosmic rays must
instead be charged particles that interact with the geomagnetic field Clay [1927].
Both direct observations of these particles from spacecraft in the sun’s helio-
sphere, along with ground-based indirect observations from the air showers they
produce upon interacting with our atmosphere, has given us a deep insight into
our knowledge of cosmic rays. Even so, there is still a lot we don’t know, and
cosmic ray acceleration in particular is currently a topic of intense research and
debate.
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1.2 Cosmic Ray Species

There is clear indication from the observations of cosmic rays that there is a large
number of sources and indeed acceleration mechanisms that create them. Both
their spectra and composition indicate that not all cosmic rays are created by the
same process or in the same environment, and thus cosmic rays are usually split
into distinct species. With our focus on that population commonly referred to as
suprathermal tail particles (STPs), we give only a brief introduction to each of the
remaining varieties, leaving a more detailed discussion of STPs until Section 1.4.
For a more comprehensive review focused on the origin of galactic cosmic rays,
see Blasi [2013]; for a review on extra-galactic/ultra-high energy cosmic rays, see
Aloisio [2012]; for a review specifically on solar energetic particles, see Ryan et al.
[2000]; finally, for an anomalous cosmic rays review, see Florinski [2009]. Some
possible acceleration mechanisms of each of these species will then be discussed
in Section 1.3.

1.2.1 Galactic and Extra-Galactic Cosmic Rays

Figure 1.1 is a well known plot of the energy spectrum of galactic and extra-
galactic cosmic rays, namely those that originated outside of our heliosphere. As
can be seen, the range is vast, with some cosmic rays having energies in excess of
1018 eV nucleon−1 (so called ultra high-energy cosmic rays or UHECRs). A clear
feature of the spectrum is that, above ∼ 109 eV nucleon−1, it takes the form of
a broken power law, with two significant changes in the spectral index: one at
∼ 1015 eV nucleon−1 (referred to as the “knee”) where the spectral index changes
from ∼ 2.67 to ∼ 3.19 and another at ∼ 1018 eV nucleon−1 (referred to as the
“ankle”) where it again changes to ∼ 2.7. This is a clear indication that multiple
sources are in play to produce the overall spectrum. Any acceleration mechanism
that hopes to explain at least part of the spectrum must be able to naturally
create a power law with one of these particular spectral indices.

The population with energies below the knee is believed to be most well un-
derstood. It is generally agreed among the community that these cosmic rays
originate from supernova remnants as was first suggested in Baade and Zwicky
[1934]. The process that accelerates the particles to these high energies is typi-
cally referred to as diffusive shock acceleration, the physics of which will be briefly
discussed in Section 1.3.4.

Current models of diffusive shock acceleration at supernova remnants can
typically only account for particle energies up to the knee (although there are
also theories in the literature that show that it is possible to go above the knee
- see, for example, Bell [2004]). Some authors have identified this as requiring a
different mechanism to explain the more energetic particles between the knee and
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Beatty and Westerhoff [2009]

Figure 1.1: The galactic and extra-galactic cosmic ray spectrum. Above ∼ 109

eV nucleon−1, it takes the form of a broken power law, with these changes in
power law index being referred to as the knee and the ankle, as indicated above.
A second knee betwee the knee and ankle just below 1017 eV nucleon−1 is also
debated. Information and statistics about each energy range reduces with in-
creasing energy. Note that the data used to create this spectra was taken from
not just one but numerous detectors, represented by the different colours and as
named above. For a general review on these detectors, see Baldini [2014].
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ankle. Unlike particles of lower energy, the origin of particles in this range is still
under intense debate. This is, in part, due to the low amount of data we have
for these particles: roughly only one cosmic ray in this energy range per square
metre per year hits the Earth’s surface. Most theories attribute these energetic
particles to either some other galactic source (including nonstandard supernova
remnants - see Hillas [2006]), or a transition to extragalactic cosmic ray sources
(see, for example, Biermann and de Souza [2012]). Also, note that the presence
of a second knee just below 1017 eV nucleon−1 is also debated, which may signal
a change form galactic to extra-galactic sources (see Hörandel [2007]).

Due to their extremely high energies, particles above the ankle interact very
little with both the galactic and solar magnetic field, and thus information about
their arrival directions remains highly intact. As they appear to be highly
isotropic, the origin of cosmic rays above the ankle is usually considered to be
of an extragalactic nature. However, cosmic rays with energies of 5 × 1019 eV
nucleon−1 and greater interact strongly with the cosmic microwave background
radiation, ultimately losing energy in the process. This effect, known as the as
the Greisen-Zatsepin-Kuzmin (GZK) limit and first published in Greisen [1966]
and Zatsepin and Kuz’min [1966], limits the distance of any source of UHECRs
to < 100 Mpc. This restriction, as well as the knowledge that acceleration be-
comes inefficient when a particle’s gyroradius is greater than the acceleration
region, helps to narrow down possible sources. Current candidates are neutron
stars (see Blasi et al. [2000]), active galactic nuclei (see Duţan and Caramete
[2015]), gamma ray bursts (see Baerwald et al. [2015]) and clusters of galaxies
(see Pierpaoli and Farrar [2005]) amongst others. With a low flux of about 1
particle per square kilometer per year, the lack of statistics on UHECRs make it
a continuously difficult subject to investigate and explain. For the most recent
data on UHECRs as of this writing, see Aab et al. [2015].

Finally, note that all cosmic rays that originate from outside the heliosphere
interact with both the solar wind and the Earth’s magnetic field during their
propagation to the observer. Depending on the particle’s original energy, this
can lead to an energy decrease and hence a change in the spectrum. This effect,
known as solar modulation, will be discussed further in Section 3.3.

1.2.2 Solar Energetic Particles

Solar energetic particles (SEPs), as the name suggests, originate from the Sun
and were first discovered by Forbush [1946]. They have a similar composition to
that of GCRs, i.e. they are composed primarily of protons, electrons and heavier
ions, with an energy range of 105 − 109 eV nucleon−1 (see Figure 1.2). Origi-
nally, solar flares were believed to be the source of all of these particles. However,
some SEP events caused intensity-time profiles that lasted for days rather than
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the expected duration of hours. This problem was originally attributed to in-
terplanetary particle scattering Meyer et al. [1956]. However, it was discovered
that there are in fact two distinct processes at hand: impulsive SEP events at
solar flares, and gradual SEP events in interplanetary shocks driven by coronal
mass ejections Cane et al. [1986]. Even so, recent research has shown that this
separation into two clear-cut divisions may not be the case; rather, a continuous
transition between these processes is more likely Kallenrode [2003]. Some of the
mechanisms behind the creation of these particles will be discussed in Section
1.3.

Also shown in Figure 1.2 is the spectrum of what are commonly referred to as
corotating interactive region (CIR) particles. Some authors regard these particles
as a sub-branch of SEPs, while others consider them a separate species entirely.
Here, we take the former approach and include them in this section. Corotating
interaction regions form as a consequence of the non-uniformity of the solar wind,
which causes the faster moving solar wind to collide with the slower wind, creating
shocks. They have a similar energy range of other SEPs, with a range of 105−107

eV nucleon−1. Once again, we leave the mechanism behind the acceleration of
these particles until Section 1.3, while also directing the reader to the review by
Mason et al. [1999].

1.2.3 Anomalous Cosmic Rays

Anomalous cosmic rays (ACRs) were first discovered independently by Hovestadt
et al. [1973] and Garcia-Munoz et al. [1973] and have an energy range of 106−108

eV nucleon−1 (see Figure 1.2). They differ in composition from both galactic
cosmic rays and solar energetic particles, particularly in the abundance of helium
and oxygen Mewaldt et al. [1998]. Their origin is not fully understood, however
a theory first put forward by Pesses et al. [1981] was considered a compelling
explanation for decades. Initially, neutral interstellar atoms enter the heliosphere
unimpeded. Eventually, some are ionised either by solar radiation or by charge
exchange with the solar wind. These newly charged particles are then “picked
up” by the solar wind and advected back towards the outer heliosphere. Here,
they are then met by the termination shock where they undergo diffusive shock
acceleration. A fraction of these newly energised particles then diffuse back into
the inner heliosphere where they are detected.

However, data from both Voyager spacecraft, which recently crossed the ter-
mination shock, has called into dispute this theory. According to the data (see,
for example, Fisk [2005]), there has been no clear indication that this process
is occurring. Indeed, the intensity of ACRs seems to increase past the shock,
possibility indicating that they are in fact accelerated further out. This discrep-
ancy has naturally led to numerous new theories to explain their origin (see, for
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Mewaldt et al. [2001]

Figure 1.2: The collective spectra of all energetic particles detected by the ACE
spacecraft over a period of 30 months just after solar minimum. Numerous dis-
tinct species are displayed: the slow and fast solar wind, both impulsive and grad-
ual solar energetic particles (SEPs), corotating interaction regions (CIR) particles,
anomalous cosmic rays (ACRs), galactic cosmic rays (GCRs) and suprathermal
tail particles (STPs).
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example, Drake et al. [2010]). Clearly, the origin of these particles is still not
fully understood and further investigation is required.

1.3 Acceleration of Cosmic Rays

Before detailing the specific problem of the origin of suprathermal tail particles
(STPs), we would first like to present a quick outline of the subject of particle
acceleration in general. As we have seen in Section 1.2, there are a vast num-
ber of different types of cosmic rays, both in their origin and in their spectra.
This encourages the idea that not all cosmic rays are accelerated via the same
mechanism; rather, it implies that there must be a number of different processes
that lead to some form of particle acceleration. These theories must explain a
number of key features that are found in each species: energy ranges, spectral
shape and indices, cut-offs etc. For example, for this work’s primary goal, the
mechanism must create a power law spectra with a specific momentum power law
index of ≈ −5. While there are indeed numerous acceleration mechanisms that
lead to a power law tail, finding a theory that leads to this specific spectral index
is what makes it both difficult and indeed fascinating. Thus, it is a good idea to
summarise as many acceleration mechanisms as possible, albeit briefly, so as to
understand why so many have been ruled out as the possible explanation.

In this section, we give a brief review of some of the more well known and
studied particle acceleration mechanisms. In Chapter 4, we will then apply these
theories to the heliosphere in an attempt to explain the observed p−5 spectrum,
while also introducing a new theory that has been developed solely to explain
this tail. For a more comprehensive review of particle acceleration in general, the
reader is directed to Kirk et al. [1994].

1.3.1 Lorentz Force

A particle moving with velocity V in the presence of an electric field E and a
magnetic field B experiences a force F which, for non-relativistic particles, is
given by

F = q(E + V ×B) (1.1)

where q is the charge of the particle. Let us first consider the simple case when
there is no electric field and the magnetic field is uniform and of the form B =
B0êz . Equation 1.1 now reads as

dV⊥
dt

=
qB0

m
V⊥ × êz

dVz
dt

= 0

(1.2)
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where we have used F = mdV/dt and we have written V = V⊥ + Vzêz. These
equations have general solutions of the form

Vx = V⊥ sin(ωgt+ φ)

Vy = V⊥ cos(ωgt+ φ)

Vz = V‖

(1.3)

and hence, performing another integration, the particle’s trajectory is given by
the following

x− x0 = −V⊥
ωg

cos(ωgt+ φ)

y − y0 =
V⊥
ωg

sin(ωgt+ φ)

z − z0 = V‖t

(1.4)

where V⊥ and V‖ are constants, φ is the phase and

ωg =
qB0

m
(1.5)

is known as the gyrofrequency. Thus, any particle in this simplified electromag-
netic field will move at a constant speed V‖ parallel to the magnetic field and
will gyrate in circular motion in the direction perpendicular to the magnetic field
with gyroradius

rg =
V⊥
ωg

=
mV⊥
qB0

(1.6)

Hence, overall, the particle moves in a helical pattern as shown in Figure 1.3.

1.3.2 Particle Drifts

The trajectory calculated in the previous section was for an idealised case of a
magnetic field in the absence of any external forces, including that of an electric
field. In what follows, we drop this assumption and discover what effect, if any,
it has on the particle’s motion.

E×B Drift To begin, let us consider a constant, uniform electric field of the
form E = E0xêx +E0yêy +E0zêz and the same uniform magnetic field B = B0êz.
The components of equation 1.1 now take the form
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Figure 1.3: The helical motion of a particle in a uniform, constant magnetic field
and in the absence of any external forces, including an electric field. This motion
is seen as the sum of a translational motion in the direction of the magnetic field
as well as a circular motion perpendicular to the magnetic field. The particle’s
gyroradius is dependent on the magnetic field strength, the particle’s perpen-
dicular velocity, and both the particle’s mass and charge, as given by equation
1.5.

dVx
dt

=
q

m
E0x +

qVy
m
B0

dVy
dt

=
q

m
E0y −

qVx
m
B0

dVz
dt

=
q

m
E0z

(1.7)

From the last equation, it is clear that the particle undergoes uniform acceleration
parallel to the magnetic field. For the equations perpendicular to the magnetic
field, let us remove the acceleration terms on the left hand sides, remembering
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that they result in circular motion. Thus the perpendicular equations now read

0 =
q

m
E0x +

qVy
m
B0

0 =
q

m
E0y −

qVx
m
B0

(1.8)

and have solutions

Vx =
E0y

B0

Vy = −E0x

B0

(1.9)

or, writing in vector form

VD =
E×B

B2
(1.10)

Hence, as well as the circular motion perpendicular to the magnetic field, we have
an additional “drift” caused by the uniform electric field, commonly referred to
as the “E cross B drift”. In fact, we can generalise this equation for any external
force by replacing E by F/q

VD =
F×B

qB2
(1.11)

which, as we will see later, will be useful for determining drift caused by a non-
uniform magnetic field.

Polarisation Drift Let us now consider an electric field that is also time de-
pendent. For simplicity, let us assume that this time dependence is oscillatory
and of the form

E′ = Ee−iωt (1.12)

where E has the same meaning as before. Thus, equation 1.1 is now given by

m
dV

dt
= q(Ee−iwt + V ×B) (1.13)

Let us trial a solution of the form V = VDe
−iwt. Inserting into equation 1.13

− iωmVD = q(E + VD ×B) (1.14)

Multiplying the above by ×B

− iωmVD ×B = q(E×B−B2VD) (1.15)

where we have used (VD×B)×B = B·VD−B2VD and assumed that B·VD = 0.
To eliminate the VD×B term, we combine equations 1.14 and 1.15 which, upon
rearranging, gives the following

iωqmE = ω2m2VD + q2(E×B−B2VD) (1.16)
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Rearranging, we obtain

VD

(
1− ω2m2

q2B2

)
=

E×B

B2
− m

qB2

dE

dt
(1.17)

Assuming that ωm/qB � 1, this tell us that the drift velocity is the sum of the
aforementioned “E cross B” drift plus a term entirely due to the time dependence
of E, known as the polarisation drift.

Up to this point, we have also assumed that the magnetic field is uniform,
with zero gradient and no curvature. For the following two types of drift, we once
again remove each of these assumptions in order to see if any particle drifts are
thus created.

Grad-B Drift Let us begin by assuming that there is a gradient in the mag-
netic field and that this non-uniform magnetic field takes the form B = Bz(y)êz.
This gradient will cause the gyroradius of the particle to no longer be uniform
throughout the orbit, thus causing a drift. Assuming that there is no electric
field, the Lorentz force, in component form, is

Fx = qVyBz (1.18)

Fy = −qVxBz (1.19)

To continue, let us make an assumption on the overall effect that this gradient
has on the particle’s motion. We assume that, within one particle orbit, the
magnetic field remains approximately uniform. In other words, the length scale
L over which the magnetic field varies due to this gradient is much larger than the
gyroradius rg given by equation 1.6. Hence, the particle motion perpendicular
to the magnetic field remains approximately a circle. We can now say that the
gradient of B is roughly

dBz

dy
≈ Bz

L
� Bz

rg
(1.20)

and hence, for y < rg, we may expand Bz in a Taylor series

Bz(y) = B0 + y
dBz

dy
+ O(y2) (1.21)

Inserting this into equations 1.18 and 1.19

Fx ≈ qVy

(
B0 + y

dBz

dy

)
(1.22)
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Fy ≈ −qVx
(
B0 + y

dBz

dy

)
(1.23)

As we are assuming that the trajectories perpendicular to B remain approxi-
mately circular, we can use equation 1.3 to replace Vx and Vy and equation 1.4
to replace y

Fx ≈ qV⊥ cos(ωgt+ φ)

(
B0 +

V⊥
ωg

sin(ωgt+ φ)
dBz

dy

)
(1.24)

Fy ≈ −qV⊥ sin(ωgt+ φ)

(
B0 +

V⊥
ωg

sin(ωgt+ φ)
dBz

dy

)
(1.25)

where we have set y0 = 0. Averaging over one gyroperiod

〈Fx〉 ≈ qV⊥

(
〈cos(ωgt+ φ)〉B0 +

V⊥
ωg
〈cos(ωgt+ φ) sin(ωgt+ φ)〉dBz

dy

)
= 0

(1.26)

〈Fy〉 ≈ −qV⊥
(
〈sin(ωgt+ φ)〉B0 +

V⊥
ωg
〈sin2(ωgt+ φ)〉dBz

dy

)
= −qV

2
⊥

2ωg

dBz

dy
(1.27)

where we have used 〈cos(ωgt+φ)〉 = 〈sin(ωgt+φ)〉 = 〈cos(ωgt+φ) sin(ωgt+φ)〉 = 0
and 〈sin2(ωgt + φ)〉 = 1/2. If we now sub this into equation 1.11, we obtain the
resulting drift caused by this force as

VD =
〈Fy〉êy ×Bzêz

qB2
z

=
V 2
⊥

2ωgBz

dBz

dy
êx (1.28)

Writing this in vector form, we find that the drift caused by a gradient in the
magnetic field is given by

VD =
V 2
⊥

2ωg

B×∇B
B2

(1.29)

Curvature Drift Finally, another drift that is associated with a non-uniform
magnetic field is that of curvature drift. If the magnetic field lines are curved, a
charged particle will experience a centripetal force

F =
mV 2

‖

rc
r̂ (1.30)

where rc is the radius of curvature. Inserting into our general force formula given
by equation 1.11, we obtain

VD =
mV 2

‖

qrc

r̂×∇B
B2

(1.31)
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These drifts that we have derived are some of the more well studied and, for
many environments, the most important. However, under general circumstances,
there are far more possible drifts that can accumulate. Rather than deriving the
remainder, we instead list some more well known drifts

• Gravitational drift: Caused by the particle’s presence in a gravitational
field. Takes the form

VD =
g ×B

qB2
(1.32)

Due to the mass dependence, this drift is negligible for electrons. This drift
is considered important in regions containing a large number of charged
particles near a massive body, e.g. the Earth’s ionosphere.

• Grad E drift: As one may expect, as a drift results from a gradient in a
magnetic field, a drift also occurs due to an electric field gradient. This is
given by

VD =

(
1 +

1

4
r2
g∇2

)
E×B

B2
(1.33)

• Inertial drift: As well as a time dependent electric field, a drift motion
can also be caused by a time dependent magnetic field. This takes the form

VD =
V‖
ωgB2

B× dB

dt
(1.34)

We conclude this section by stating the importance of the particle drifts in
the heliosphere. It has been shown that drifts can play a crucial role in certain
circumstances, e.g. the solar modulation of galactic cosmic rays (see, for example,
Jokipii et al. [1977]) to be discussed further in Section 3.3, and shock drift accel-
eration at perpendicular shocks (see, for example, Ball and Melrose [2001]) to be
briefly described in Section 1.3.4. However, particle drifts are usually considered
unimportant for certain particle populations accelerated within the heliosphere
(although this is debated - see Marsh et al. [2013]), including STPs. As we are
focusing on stochastic processes in particular, we neglect the affect of drifts on
the transport and acceleration of particles in the energy ranges we are interested
in, keeping in mind that their importance is still not settled.
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1.3.3 Fermi Acceleration

First envisaged by Enrico Fermi in Fermi [1949], the principle idea is that a
particle can gain energy via multiple scatterings off a moving magnetic cloud.
With each head-on collision, a particle gains energy, and with each rear-end
collision, it loses energy. Fermi argued that, in a typical space environment,
head-on collisions are more probable and thus there is an overall energy gain,
with the process seen as a random walk in velocity space. This original form of
Fermi acceleration is known as second order Fermi acceleration, as the average
particle energy gain is quadratically proportional to the cloud velocity V , i.e.〈

∆E

E0

〉
∝ V 2

c2
(1.35)

where ∆E = Enew − E0. To show this result mathematically, we consider the
general case of a relativistic particle with energy E and velocity v in the observer’s
frame striking a cloud, which we approximate as an infinitely massive smooth
surface moving at velocity V in the x direction. The energy of the particle before
the collision in the cloud’s frame, i.e. in the frame moving to the right at a speed
V , is given by the usual relation

E ′0 = γ(E0 + V px,0) (1.36)

where γ = 1/
√

1− (V/c)2 is the relativistic gamma factor. Similarly, the x
component of the particle’s momentum in the cloud’s frame is

p′x,0 = γ

(
px,0 +

vE0

c2

)
(1.37)

In the cloud’s frame, we assume that the collision between the particle and the
cloud is elastic. Hence, as we also assume an infinitely massive cloud, the energy
of the particle remains unchanged (E ′new = E ′0) and the particle’s momentum
component in the x direction merely flips (p′x,new = −p′x,0). Thus, transferring
back to the observer’s frame

Enew = γ(E ′new − V p′x,new) = γ(E ′0 + V p′x,0) (1.38)

Inserting the relations 1.36 and 1.37 into 1.38, we obtain

Enew = γ2

(
E0 + 2V px,0 +

V 2E

c2

)
= γ2E0

(
1 +

2V v cos θ

c2
+
V 2

c2

) (1.39)
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where θ is angle between the particle’s momentum and the normal to the cloud,
and where we have used px,0 = p0 cos θ and p0 = E0v/c. Expanding γ in V and
keeping only terms of O(V/c)2 or less, we arrive at

∆E = Enew − E0 = E0

(
2V v cos θ

c2
+ 2

V 2

c2

)
(1.40)

Finally, averaging over the angle θ, we find that〈
∆E

E0

〉
=

2

3

V 2

c2
+ 2

V 2

c2
=

8

3

V 2

c2
(1.41)

which is the relation we required.
This principle has since been improved upon by also allowing charged particles

to be scattered off other entities, e.g. small scale electric and magnetic waves
and large scale velocity fluctuations. This concept, also known as stochastic
acceleration, is the focal mechanism of this work, and it will be discussed in more
detail, along with the resulting spectra, in Chapter 4.

1.3.4 First Order Fermi Acceleration

This seemingly unlikely event occurs when there are only head-on collisions with
the scatterers. Surprisingly, however, there exists a natural phenomenon with
just the right setting - a shock (see Figure 1.4). In the plasma rest frame, the
plasma flows on either side are converging towards the shock, thus allowing the
particles to experience only head-on collisions. Every interaction therefore leads
to a gain in energy, by an amount that can be shown to be on average linearly
related to the shock velocity Longair [1992]〈

∆E

E0

〉
∝ V

c
(1.42)

Hence this type of Fermi acceleration is much more efficient at accelerating par-
ticles than second-order acceleration. This theory, when applied to shocks, is
commonly referred to as diffusive shock acceleration (DSA), and was first in-
troduced by numerous authors (Axford et al. [1977], Bell [1978a] & Bell [1978b],
Blandford and Ostriker [1978] and Krymskii [1977]). The accelerated particles are
believed to be contained within the shock region via scattering off shock induced
turbulence downstream of the shock and waves created by the energetic particles
themselves upstream of the shock Drury [1983]. An interesting feature of this
mechanism is that, for the idealised case of a non-relativistic, parallel shock, in
which the magnetic field is parallel to the normal of the shock, it naturally leads
to a power law spectrum given by

N(E) ∝ E−α (1.43)
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Shock frontUpstream Downstream

Turbulent field lines

Vu Vd

http://sprg.ssl.berkeley.edu/ pulupa/illustrations/

Figure 1.4: The process of diffusive shock acceleration at an idealised quasi-
parallel hydromagnetic shock. The plane shock is assumed to be a sharp discon-
tinuity and all quantities are shown in the shock rest frame. The shock compresses
the plasma, causing both strong plasma heating and an increase in magnetic field
turbulence. Particles downstream of the shock are reflected by this turbulence
back towards the shock, while upstream particles are reflected by self-generated
waves.
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with α = (r + 2)/(r − 1), where N(E) is the number of particles of energy E
and r is the shock compression ratio, i.e. r = Vup/Vdown Longair [1992]. In other
words, the spectral index depends only on the compression ratio and not on local
conditions at the shock - a surprising result.

For strong shocks, where the shock mach number M satisfies M � 1, the
compression ratio can be shown to be given by r = 4 and hence an E−2 spec-
trum is obtained Longair [1992]. As was mentioned in Section 1.2.1, diffusive
shock acceleration (DSA) is widely accepted as being the primary acceleration
process behind the creation of galactic cosmic rays (GCRs) via shocks produced
at supernova remnants. Inclusion of both non-linear effects and magnetic field
amplification can alter this spectral index to match that found below the knee,
as shown in Figure 1.2 (see, for example, Duffy [1992], Vladimirov et al. [2006]
and Schure et al. [2012]). DSA may also play an important role in particle accel-
eration at co-rotating interactive regions (CIRs) Fisk and Lee [1980], at gradual
SEP events Reames [1999] and, as was discussed in Section 1.2.3, is a competing
theory in explaining the acceleration of anomalous cosmic rays (ACRs) at our
own solar termination shock.

While we have given a brief insight into possible acceleration mechanisms of
cosmic rays, we certainly do not claim to have given a full picture. For example,
magnetic reconnection, in which the topology of magnetic field lines are changed
and magnetic energy is converted into energy used in accelerating particles, is
believed to be an important procedure for various species, e.g. solar flares (see,
for example, Su et al. [2013]). Also, another shock acceleration process, known
as shock drift acceleration, may also be important at certain heliospheric shocks.
Here, a particle “E cross B” drifts towards the shock, as described in Section 1.3.2,
before being repeatedly accelerated at the shock during its helical motion along
it. This is seen as an important mechanism at perpendicular shocks, in which
the shock normal is perpendicular to the background magnetic field, as diffusive
shock acceleration is typically considered inefficient for this shock type. Numerous
particle populations may be accelerated in this manner, e.g. co-rotating inter-
active region (CIR) particles (see, for example, Chalov [2001]), and pick-up ions
at the termination shock (see, for example, Chalov [2000]). Finally, as we have
mentioned previously, there are also numerous theories that have been developed
purely to explain the origin of the suprathermal tail, e.g. the pump mechanism
of Fisk and Gloeckler [2008]. This theory, in particular, will be discussed in more
detail in Chapter 4.
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1.4 The Suprathermal Tail

The main focus of this work is on the existence of a suprathermal tail in the
solar wind, as shown in Figure 1.2 (see, for example, Fisk and Gloeckler [2008]).
This particle population is approximately isotropic, with a composition similar
to that of the solar wind. Their energies have a range of 103− 106 eV nucleon−1,
corresponding to velocities ranging from the solar wind speed Vsw to 30Vsw. Most
importantly, with respect to this work, their spectra in this range take the form
of a power law in momentum with an index close to −5, and an exponential
rollover at higher speeds. This spectra is found both in quiet time and disturbed
conditions, near and far from shocks, and in the inner and outer heliosphere.
This seemingly implies that this tail may be universal, independent of plasma
conditions. Thus, a theory which is not sensitive to the environment at which the
acceleration takes place would appear to be necessary to explain the observations.

Figure 1.5 is the observations made by the Advanced Composition Explorer
(ACE ) spacecraft over an 82 day period in 2009, a quiet-time of a deep solar
minimum, using both the Solar Wind Ion Composition Spectrometer (SWICS )
and the Ultra Low Energy Isotope Spectrometer (ULEIS ). Shown are the solar
wind’s density and speed, as well as the suprathermal tail’s density and power
law index. As can be seen, throughout the duration of this analysis, an index of
−5 was consistently obtained with little deviations.

Figure 1.6 is the resulting spectra obtained at particular tail densities during
the same period - the left panel at the highest and lowest densities and the
right panel at the shaded bins in Figure 1.5. Once again, p−5 spectra are clearly
observed at low speeds; however, a more complicated spectra than the expected
exponential rollover is seen at higher energies. This is explained in Fisk and
Gloeckler [2012] as being composed of particles that are accelerated elsewhere
before being modulated while propagating to the spacecraft.

Figure 1.7 contain the observations made by ACE using SWICS over the en-
tire year of 2001. This was a year of extremely disturbed conditions, with 61
shocks present in total. Even so, a power law index close to −5 is still consis-
tently found throughout the year, indicating once again that this tail seem to be
prevalent independent of the particular environment.

However, more extreme departures from a −5 power law index have also
been observed. Figure 1.8 is the observed spectra of H+, He+ and He++ taken by
Cassini’s Magnetospheric Imaging Instrument Charge-Mass-Energy Spectrometer
(MIMI/CHEMS ) over a two and half month quiet-time period in 2000. Both H+

and He++ spectra closely follow an E−1.5 power law in energy, consistent with a
p−5 spectrum. The spectrum obtained of He+, on the other hand, experiences a
significant deviation. Also, Table 1.1 shows a survey of the power law index for
heavy ions over a period of thirteen years obtained by both the SupraThermal-
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Fisk and Gloeckler [2012]

Figure 1.5: The solar wind speed, solar wind density, suprathermal proton tail
density and the suprathermal proton tail power law index taken by the ACE
spacecraft for a duration of 82 days in 2009. This data was collected during a
quiet-time, with the few shocks created during this period indicated by vertical
lines. The shaded regions designate time bins to be used in Figure 1.6. A power
law index close to −5 appears to be a consistent feature in this time period.
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Fisk and Gloeckler [2012]

Figure 1.6: The resulting suprathermal proton spectra obtained for particular
time bins taken from Figure 1.5. In the left panel, the spectra is calculated at
both the highest and lowest tail densities. In the right panel, the spectra from
the shaded regions of Figure 1.5 are shown. In both cases, at low energies, p−5

spectra are evident. At higher energies, more complicated spectra are observed,
possibly due to particles being accelerated elsewhere.

Fisk and Gloeckler [2012]

Figure 1.7: The solar wind and tail parameters obtained by ACE during the
extreme disturbed conditions of 2001. Shown are the solar wind speed (red), the
power law index (blue) and the proton tail density (green). A total of 61 shocks
are present and represented by vertical lines. A common spectral index of −5 is
still evident even in these conditions.
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through Energetic Particle Telescope (STEP) on-board the Wind satellite as well
as the aforementioned ULEIS on-board ACE. The spectra is once again a power
law in energy of the form E−x, with x spanning from 1.27 − 2.29. While this
encompasses the required 1.5 index, there is also a notable departure for several
of the years.

CNO NeS Fe
Year STEP ULEIS STEP ULEIS STEP ULEIS
1995 1.91± 0.03 N/A 1.82± 0.07 N/A 1.86± 0.08 N/A
1996 2.29± 0.05 N/A 1.98± 0.12 N/A 2.01± 0.18 N/A
1997 2.01± 0.05 N/A 1.60± 0.10 N/A 1.91± 0.10 N/A
1998 1.56± 0.05 1.85± 0.03 1.48± 0.08 1.90± 0.04 1.79± 0.22 1.77± 0.06
1999 2.18± 0.04 2.00± 0.03 1.68± 0.06 1.76± 0.05 1.67± 0.06 1.44± 0.07
2000 1.45± 0.04 1.59± 0.02 1.31± 0.05 1.72± 0.02 1.27± 0.05 1.77± 0.03
2001 1.57± 0.04 1.72± 0.02 1.32± 0.06 1.67± 0.03 1.33± 0.06 1.55± 0.03
2002 1.46± 0.06 1.73± 0.02 1.28± 0.08 1.75± 0.03 1.64± 0.07 1.59± 0.04
2003 1.75± 0.07 1.60± 0.03 1.75± 0.10 1.85± 0.05 1.67± 0.09 1.45± 0.07
2004 1.80± 0.03 1.61± 0.02 1.71± 0.06 1.49± 0.04 1.65± 0.07 1.47± 0.05
2005 1.38± 0.03 1.32± 0.02 1.46± 0.06 1.36± 0.03 1.58± 0.08 1.65± 0.05
2006 1.79± 0.04 1.85± 0.02 1.84± 0.10 1.87± 0.04 1.35± 0.12 1.69± 0.09
2007 1.89± 0.04 1.80± 0.03 1.59± 0.11 1.52± 0.06 1.38± 0.15 1.52± 0.12

Table 1.1: The values of the spectral power law index for various species obtained
by both Wind/STEP and ACE/ULEIS over a thirteen year period from 1995−
2007. The average index value during this period is -1.66, slightly larger than the
required index of −1.5 that corresponds to a momentum power law index of −5.
Data is taken from Dayeh et al. [2009].

In this work, we present our theory on the explanation of this universal spec-
trum as well as explaining the existence of possible deviations. Before doing so,
in Chapter 2, we give a brief discussion on the environment in which these par-
ticles are accelerated, namely the heliosphere. In Chapter 3, we then discuss the
mathematics governing the acceleration and transport of these energetic particles.
Other theories that have been developed to explain the suprathermal tail are then
summarised in Chapter 4, including some of our own improvements. Finally, we
introduce our analytical (Chapter 5) and numerical (Chapter 6) theories on the
origin of these spectra.
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Hill et al. [2009]

Figure 1.8: The observed quiet-time tails taken by Cassini from mid-July to the
beginning of October of H+, He+ and He++. An E−1.5 power law, corresponding
to a momentum power law of p−5, is also shown. Above energies of ∼ 104 eV
nucleon−1, a power law index close to −1.5 is observed for both H+ and He++.
However for He+, a spectrum that is significantly steeper is found.
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Chapter 2

The Heliosphere

In this chapter, we present a brief outline of the environment in which these
suprathermal particles are accelerated. Figure 2.1 shows the main features en-
compassing the global picture of the heliosphere, i.e. the bubble separating the
region dominated by the Sun and that of the interstellar medium (ISM). These
components are believed to be generated primarily by the interaction of the ISM
with both the solar wind and the heliospheric magnetic field (HMF) (often re-
ferred to as the interplanetary magnetic field (IMF) in the literature), and are as
follows:

• the termination shock, the boundary at which the solar wind transitions
from supersonic to subsonic speed

• the heliopause, where the pressure exerted by the solar wind balances the
pressure of the ISM

• the bow wave, the existence of which is due to the heliosphere’s motion
through the interstellar medium

Before discussing the observations and experiments on each of these features, we
begin with a brief history of the discovery of the solar wind, naturally leading
us into early but important and widely used models for both the motion of the
solar wind and the HMF. For more detailed reviews on the solar wind and HMF,
the reader is directed to Miralles and Sánchez Almeida [2011] and Owens and
Forsyth [2013] respectively.

The solar wind, as the name suggests, is a “wind” of particles that originates
from the upper solar atmosphere. It is primarily composed of electrons and
protons with energies in the keV nucleon−1 range, and extends out to as far
as ∼ 150 − 200 AU from the centre of the Sun Fitzpatrick [2014]. The idea
that the Sun might be emitting a wind of particles was first put forward with the
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http://ibex.swri.edu/archive/2013.07.10.shtml

Figure 2.1: The current picture, as of this writing, of the global configuration of
the heliosphere. Shown are the following: the solar system, the region composed
of the Sun and planets; the termination shock, the boundary at which the solar
wind speed goes from supersonic to subsonic; the heliosheath, the region beyond
the termination shock that is considered turbulent due to interactions between
the solar wind and the interstellar medium (ISM); the heliopause, the boundary
at which the solar wind is stopped by the pressure of the ISM; and the bow wave,
the boundary at which the heliosphere begins to interact with the ISM.
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discovery of a solar flare, a sudden outburst of energy from the Sun, in Carrington
[1859]. The following day, an abrupt change in the Earth’s magnetic field, i.e.
a geomagnetic storm, occurred, and Carrington believed that there may be a
link between these two events. Soon after, in 1916, Kristian Birkeland further
developed this belief with his study of the aurorae, a phenomenon now known to
be caused by the solar wind. His conclusion from his experiments was that the
Earth was being constantly bombarded by particles from the Sun of both positive
and negative charge Birkeland [1916]. In 1951, Ludwig Biermann postulated that
as a comet’s tail always points away from the Sun, independent of the comet’s
direction, that this might be due to a stream of particles released from the Sun
that pushes the comet’s tail away (Figure 2.2) Biermann [1951].

In Section 2.1, we present a model in which it is assumed that the solar
corona is in hydrostatic equilibrium, i.e. there is no solar wind. This will lead
to a contradiction with experimental evidence, guiding us to the first practical
model of the solar wind in Section 2.2. This model is then improved upon by
the including the influence of the solar magnetic field in Section 2.3. Finally,
we discuss observations and experiments on the heliospheric structure shown in
Figure 2.1 in Section 2.4.

2.1 Chapman’s Model

The first model of the kinematics of a spherically symmetric solar corona in
hydrostatic equilibrium was published in Chapman and Zirin [1957]. Energy
within the corona is also assumed to be transferred via conduction only. Fourier’s
Law, i.e. the law of heat conduction, states that

φ = −κ∇T (2.1)

where φ is the heat flux, κ(T ) is the thermal conductivity of the fluid and ∇T is
the temperature gradient. As we are assuming that the corona is static, it follows
that

∇ · φ = −∇ · (κ∇T ) = 0 (2.2)

which, with our assumption of spherical symmetry, becomes

1

r2

d

dr

(
r2κ

dT

dr

)
= 0 (2.3)

The thermal conductivity of an ideal hydrogen plasma is related to its tempera-
ture by κ ∝ T 5/2 (see Appendix A). Inserting this into the above and integrating,
we obtain

T = T0

(r0

r

)2/7

(2.4)
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http://www.ifhc.org.br/in-the-tail-of-a-comet.htm

Figure 2.2: The orbit of a comet around the Sun. Also shown are the two distinct
types of comet tail: the dust tail, consisting of particles that have been pushed out
of the coma by both solar radiation and the solar wind; and the ion tail, created
by the ionisation of coma particles which then interact with the heliospheric
magnetic field (HMF). The tails of the comet point away from the sun at every
instant due to interaction with the solar wind.
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where T0 is the temperature at the base of the corona, r0 is the distance from the
sun’s center to the base of the corona, and where we have adopted the sensible
boundary condition that T → 0 as r →∞.

Under the assumption of hydrostatic equilibrium, the pressure gradient is
given by

dP

dr
= −GMρ

r2
(2.5)

Assuming the coronoa is an ideal fluid (ρ = P/RT ) and using equation 2.4 for T ,
we obtain

dP

dr
= −Cr5/7

0

P

r12/7
(2.6)

where C = mG/RT0r0. Integrating and rearranging

P = P0exp

{
7C

5

[(r0

r

)5/7

− 1

]}
(2.7)

One immediate problem with this pressure profile is that it does not agree with
observations: experimental data of the pressure at sun’s surface are several orders
of magnitude larger than that obtained from the above equation (see Jokipii
et al. [1997]). Thus, we conclude that one of our original assumptions must be
incorrect. Of course, as we now know, the presumption that the corona is in
a state of hydrostatic equilibrium is untrue; indeed, there is instead a constant
stream of particles ejected from it - the solar wind.

2.2 Parker’s Model

The first successful model of a non static solar corona, i.e. of the solar wind, was
published in Parker [1958]. In this model, Parker assumed that the solar wind
flow is steady, incompressible, inviscid, spherically symmetric and behaves as an
ideal fluid.

The continuity equation, or conservation of mass, states that

∂ρ

∂t
+∇ · (ρV) = 0 (2.8)

where ρ and V are the density and velocity of the wind respectively. For a steady,
spherically symmetric flow this reduces to

1

r2

d

dr
(r2ρu) = 0→ r2ρu = C (2.9)

where C 6= f(r) and u is the radial component of V. The conservation of mo-
mentum for an incompressible, inviscid flow is given by Euler’s equation

∂V

∂t
+ (V · ∇)V = −1

ρ
∇P + F (2.10)
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where F is any external force acting on the wind which, in this model, we are
assuming to be purely gravitational - F = −GM/r2. (In the next section, we
will not make this assumption, and instead will allow the solar wind to also be
influenced by the solar magnetic field.) Once again, assuming a steady, spherically
symmetric flow, this equation becomes:

u
du

dr
= −1

ρ

dP

dr
− GM

r2
(2.11)

Rewriting this in terms of the isothermal speed of sound cs =
√
P/ρ

u
du

dr
= −c

2
s

ρ

dρ

dr
− GM

r2
(2.12)

Inserting equation 2.9 for ρ and rearranging, we obtain(
u− c2

s

u

)
du

dr
=

2c2
s

r2
(r − r0) (2.13)

where r0 = GM/2c2
s, known as the sonic point, is the radius at which solar wind

speed equals the sound speed. Upon integration, we obtain(
u

cs

)2

− ln

(
u

cs

)2

= 4 ln

(
r

r0

)
+ 4

r0

r
+ A (2.14)

where A is a constant. This function is plotted in Figure 2.3 for various different
values of A. To determine which solution is indeed the correct one, this plot must
be analysed. Solutions I can be dismissed immediately as it is double valued, i.e.
the solar wind leaves the sun and then returns later, which is not observed. Solu-
tion II has a profile which is never on the solar surface, so it is trivially neglected.
Solutions III and IV imply that the solar wind is initially supersonic, another
feature that is not observed by experiment. Similarly, solution V, also known
as the solar breeze solution, has an always subsonic velocity profile, which again
goes against experimental evidence. Hence, the correct solution must be that of
Solution VI. The wind accelerates from the solar surface, eventually becoming
supersonic past the sonic point, remaining supersonic as it flows outward.

Naturally, we may also ask whether this expulsion of particles from the Sun
also leads to its magnetic field being released into the heliosphere and if so, what
form it takes. To begin, consider the magnetic flux φ =

∫
S

B · dA. The rate of
change of the magnetic flux though a surface S is

dφ

dt
=

d

dt

∫
S

B · dA =

∫
S

∂B

∂t
· dA +

∫
S

B · ∂
∂t

(dA) (2.15)
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Figure 2.3: The contour plot of equation 2.14 for the radial component of the solar
wind’s velocity profile, as predicted by the Parker model. The correct solution,
by experimental observations and the choice of boundary conditions, is given by
solution VI.
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Using Faraday’s law (∇× E = ∂B/∂t) and Stoke’s theorem (
∫
S
(∇× F) · dA =∮

L
F · dl)

dφ

dt
=

∫
S

(∇× E) · dA +

∮
L

B · (−dl×V) = −
∮
L

dl · (E + V ×B) = 0 (2.16)

where the last term is zero by Ohm’s Law for a plasma with infinite conductiv-
ity. Thus, as the plasma moves out at velocity V, the magnetic flux φ remains
constant, implying that the magnetic field must be “frozen in” to the plasma and
move out with it. To calculate the profile of this magnetic field, Gauss’ law for
magnetism (∇ ·B = 0), in this spherical symmetry, is given by

1

r2

∂

∂r
(r2Br) = 0 (2.17)

which implies that r2Br = r2
0B0, where r0 is the radius of the sun and B0 is the

magnetic field strength at r0. Thus, the radial component of the magnetic field
is given by

Br = B0

(r0

r

)2

(2.18)

To determine the azimuthal component, we use the streamlines of the solar wind

1

r sin θ

dr

dφ
=
Vr
Vφ

=
u

Ωr
(2.19)

where u is given by equation 2.14 and Vφ = Ωr due to the rotation of the Sun,
where Ω is the Sun’s angular speed. As the magnetic field is frozen in to the
plasma, this relation must also be true for B, i.e.

Br

Bφ

=
u

Ωr
(2.20)

Inserting equation 2.18 for Br, we find that for Bφ

Bφ = B0
r2

0

r

Ω

u
(2.21)

The resulting magnetic field orientation, given by equation 2.20, is shown in
Figure 2.4, known as the Parker spiral. Figure 2.5 shows the trajectories of seven
spacecraft that have made measurements of the HMF during their respective
missions. Observations from Pioneer and Voyager Thomas and Smith [1980],
Helios Bruno and Bavassano [1997], and Ulysses Forsyth et al. [2002] infer that
this spiral is a good approximation of the HMF. Any alterations that could effect
this large scale structure are believed to be only important locally or for short
periods (see, for example, Jokipii and Kota [1989] and Fisk [1996]).
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Figure 2.4: The configuration of the heliospheric magnetic field (HMF) as ap-
proximated by equation 2.20, referred to as the Parker spiral. This orientation is
based on the Parker model of the solar wind. It consists of radial field lines due
to the magnetic field being “frozen in” to the outflowing plasma, which are then
winded up due to the Sun’s rotation.
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Balogh and Erdõs [2013]

Figure 2.5: The trajectories of seven spacecraft that have made important mea-
surements of the HMF: Voyager 1 & 2, Pioneer 10 & 11, Helios 1 & 2 and
Ulysses. Also shown is the location of the termination shock as it was crossed by
Voyager 1 & 2 respectively.

2.3 Weber and Davis Model

In the previous model, the influence of the solar magnetic field on the velocity
of the solar wind and vice versa was neglected. The first successful model of a
magnetised solar wind was published in Weber and Davis [1967]. In this model, an
additional term is added to equation 2.10 to account for the magnetic field. The
isothermal assumption is also dropped; instead, the fluid is assumed to behave
adiabatically.

The magnetic field and solar wind are assumed to have no latitude dependence,
i.e. B = Brr̂+Bφφ̂ and V = urr̂+uφφ̂. The momentum equation, now including
the solar magnetic field’s influence, is

DV

Dt
= −1

ρ
∇P − GM

r2
r̂ +

1

ρ
J×B (2.22)

where J is the current density. Rewriting the final term using Ampere’s Law
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(∇×B = µ0J), we obtain, for a steady flow

(V · ∇)V = −1

ρ
∇P − GM

r2
r̂ +

1

ρµ0

(∇×B)×B (2.23)

Next, let us analyze the radial component of this equation

ur
dur
dr

= −1

ρ

dP

dr︸ ︷︷ ︸
term A

+
µ2
φ

r
− GM

r2︸ ︷︷ ︸
term B

− Bφ

ρµ0r

d

dr
(rBφ)︸ ︷︷ ︸

term C

(2.24)

Ideally, in order to obtain a velocity profile, we would like to rewrite each of the
terms on the right hand side so that they only depend on ur and r. To do this,
we will need to use mass conservation, Maxwell’s equations, Ohm’s Law, the φ
component of equation 2.23 as well as the adiabatic and infinite conductivity
assumptions. As this involves a lot of manipulation, we look at each of these
terms in turn

Term A First, let us define the Alfvén Mach number MA

MA ≡
ur
√
µ0ρ

Br

(2.25)

which is not necessarily a constant. Consider the quantity

M2
A

urr2
=
urµ0ρ

B2
rr

2
(2.26)

Inserting the continuity equation, namely that urρ = A/r2

M2
A

urr2
=

µ0A

B2
rr

4
(2.27)

Gauss’ law of magnetism (∇·B = 0) under our assumptions states that r2Br = C,
where C is a constant. Thus, by equation 2.27, M2

A/urr
2 = µ0A/C

2 = constant.
Therefore, if we define it at the Alfvén radius (MA(rA) = 1), then

M2
A =

urr
2

uAr2
A

(2.28)

where ur(rA) ≡ uA is the Alfvén velocity. Similarly, we may define our adiabatic
condition at the Alfvén radius, namely P/PA = (ρ/ρA)γ, where γ is the ratio of
specific heats and PA and ρA are the pressure and density at the Alfvén radius
respectively. Hence

− 1

ρ

dP

dr
= −1

ρ

(
γPAρ

γ−1

ργA

)
dρ

dr
(2.29)
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Inserting ρ = ρAuAr
2
A/urr

2 by mass conservation and evaluating, we obtain

− 1

ρ

dP

dr
=

(
γPA
ρA

(
uAr

2
A

urr2

)γ−1
)(

2

r
+

1

ur

dur
dr

)
(2.30)

Finally, inserting 2.28

− 1

ρ

dP

dr
=

(
γPA

ρAM
2(γ−1)
A

)(
2

r
+

1

ur

dur
dr

)
(2.31)

Thus, this term now only depends on ur,r and MA, where MA = f(ur, r) by
equation 2.28.

Term B The azimuthal component of equation 2.23 is

ur
r

d

dr
(ruφ) =

Br

ρµ0r

d

dr
(rBφ) (2.32)

Rearranging, we obtain

d

dr
(ruφ)− Br

ρµ0ur

d

dr
(rBφ) = 0 (2.33)

According to the continuity equation (r2ρur = C) and Gauss’ law (r2Br = r2
0B0),

Br/ρµ0ur = r2
0B0/Cµ0 = constant. This allows us to easily integrate equation

2.33 as

ruφ −
Br

ρµ0ur
rBφ = L (2.34)

where L is a constant. To remove Bφ from this equation, we use Ohm’s Law,
namely J = σ(E + V ×B), where σ is the conductivity. Taking the curl of this

∇× J = σ[∇× E +∇× (V ×B))] (2.35)

Inserting that J = (∇×B)/µ0 and ∇× E = −∂B/∂t by Maxwell’s equations

1

µ0

∇× (∇×B) = σ

[
−∂B

∂t
+∇× (V ×B))

]
(2.36)

Using the identity ∇× (∇×A) = ∇(∇·A)−∇2A, we may rewrite the above as

∂B

∂t
= ∇× (V ×B)) +

1

µ0σ
(−∇(∇ ·B) +∇2B) (2.37)
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Assuming infinite conductivity and a steady flow, this is simplified as ∇× (V ×
B)) = 0, which, under spherically symmetry, is given by

1

r

∂

∂r
[r(uφBr − urBφ)]θ̂] = 0 (2.38)

i.e. upon integrating
r(uφBr − urBφ)] = D (2.39)

where D is a constant. To calculate D, we use the boundary condition that at
r = r0, i.e. at the surface of the Sun, Bφ = 0, Br = B0 and uφ = Ωr0, where
B0 is the magnetic field strength at the surface and Ω is the angular speed of
the sun. Inserting this condition in to equation 2.39, we find that D = Ωr2

0B0.
Inserting both this and Gauss’ Law (r2Br = r2

0B0) into equation 2.39, we obtain,
upon rearranging

Bφ =
uφ − rΩ
ur

Br (2.40)

Hence, inserting this for Bφ in equation 2.34

ruφ −
Br

ρµ0ur

uφ − rΩ
ur

Brr = L (2.41)

Rearranging in terms of uφ

uφ =

(
L

r
− rΩB2

r

ρµ0u2
r

)(
1

1−B2
r/ρµ0u2

r

)
= rΩ

M2
A

L

r2Ω
− 1

M2
A − 1

(2.42)

where we have used the definition of MA from equation 2.28. In order for uφ to
remain finite at MA = 1, we must have that L/r2

AΩ− 1 = 0→ L = r2
AΩ and we

therefore interpret L as equaling the angular momentum at rA. Thus, our final
expression for uφ is

uφ = rΩ
M2

A

r2
A

r2
− 1

M2
A − 1

(2.43)

and hence

µ2
φ

r
− GM

r2
= rΩ2

(
M2

A

r2
A

r2
− 1

)2

(M2
A − 1)2

− GM

r2
(2.44)

which is now also a function of only ur, r and MA(ur, r).

35



Term C Inserting equation 2.43 into 2.40 for uφ

Bφ =
Br

ur
(uφ − rΩ) =

BrrΩM
2
A

ur(M2
A − 1)

(
r2
A

r2
− 1

)
(2.45)

Hence

d

dr
(rBφ) =

d

dr

[
Brr

2ΩM2
A

ur(M2
A − 1)

(
r2
A

r2
− 1

)]
=

2BrrΩM
2
A

ur(M2
A − 1)

(
r2
A

r2
− 1

)
+

Brr
2Ω

ur(M2
A − 1)

(
r2
A

r2
− 1

)
d

dr
(M2

A)

+
r2ΩM2

A

ur(M2
A − 1)

(
r2
A

r2
− 1

)
dBr

dr
− Brr

2ΩM2
A

u2
r(M

2
A − 1)

(
r2
A

r2
− 1

)
dur
dr

− Brr
2ΩM2

A

ur(M2
A − 1)2

(
r2
A

r2
− 1

)
d

dr
(M2

A − 1) +
Brr

2ΩM2
A

ur(M2
A − 1)

d

dr

(
r2
A

r2
− 1

)
(2.46)

Using the relation

d

dr
(M2

A) =
d

dr

(
urr

2

uAr2
A

)
=

2urr

uAr2
A

+
r2

uAr2
A

dur
dr

=
2M2

A

r
+
M2

A

ur

dur
dr

(2.47)

by equation 2.28, and

dBr

dr
=

d

dr

(
r2

0

r2
B0

)
= −2r2

0

r3
B0 = −2Br

r
(2.48)

by equation 2.18, we find that

d

dr
(rBφ) =

2BrrΩM
2
A

ur(M2
A − 1)

(
r2
A

r2
− 1

)
+

Brr
2Ω

ur(M2
A − 1)

(
r2
A

r2
− 1

)(
2M2

A

r
+
M2

A

ur

dur
dr

)
− r2ΩM2

A

ur(M2
A − 1)

(
r2
A

r2
− 1

)
2Br

r
− Brr

2ΩM2
A

u2
r(M

2
A − 1)

(
r2
A

r2
− 1

)
dur
dr

− Brr
2ΩM2

A

ur(M2
A − 1)2

(
r2
A

r2
− 1

)(
2M2

A

r
+
M2

A

ur

dur
dr

)
− Brr

2ΩM2
A

ur(M2
A − 1)

(
2r2

A

r3

)
(2.49)

i.e.:

d

dr
(rBφ) =

Brr
2ΩM2

A

ur(M2
A − 1)

(
r2
A

r2
− 1

)[
�
�
�2

r
+

2

r
+
�
�
��1

ur

dur
dr �

�
�−2

r
�
�
�
��

− 1

ur

dur
dr

− M2
A

(M2
A − 1)

(
2

r
+

1

ur

dur
dr

)
− 2r2

A

r(r2
A − r2)

]
(2.50)
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Therefore, returning to our original expression

Bφ

ρµ0r

d

dr
(rBφ) =

B2
rr

2Ω2M4
A

ρµ0u2
r(M

2
A − 1)2

(
r2
A

r2
− 1

)2

×[
2

r
− M2

A

(M2
A − 1)

(
2

r
+

1

ur

dur
dr

)
− 2r2

A

r(r2
A − r2)

]
=

r2Ω2M2
A

(M2
A − 1)2

(
r2
A

r2
− 1

)2 [
2

r
− M2

A

(M2
A − 1)

(
2

r
+

1

ur

dur
dr

)
− 2r2

A

r(r2
A − r2)

]
(2.51)

where we have used equations 2.28 and 2.40. Once again, this expression is now
dependent only on ur, r and MA(ur, r).

Putting this all together by inserting equations 2.31, 2.44 and 2.51 into equa-
tion 2.24

ur
dur
dr

=

(
γPA

ρAM
2(γ−1)
A

)(
2

r
+

1

ur

dur
dr

)
− r2Ω2M2

A

(M2
A − 1)2

(
r2
A

r2
− 1

)2 [
2

r
− M2

A

(M2
A − 1)

(
2

r
+

1

ur

dur
dr

)
− 2r2

A

r(r2
A − r2)

]

+ rΩ2

(
M2

A

r2
A

r2
− 1

)2

(M2
A − 1)2

− GM

r2
(2.52)

which is the velocity profile for the radial component of the solar wind for this
model. In order to compare it to the equation originally stated in Weber and
Davis [1967], we rearrange (see Appendix B) and obtain

dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

(
ur
uA
− 1

)[
(M2

A + 1)
ur
uA
− 3M2

A + 1

]
+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3 (2.53)

Note that this equation slightly differs from their equation 23. This is believed
to be due to a typo in their paper, as our solution agrees with that found by
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other authors, e.g. Pei [2007]. The contour plot of this equation is shown in
Figure 2.6. By similar arguments to the Parker velocity profile, there is only
one viable solution, curve A. This curve, while similar in shape, differs from the
Parker solution in terms of the radius at which the solar wind becomes supersonic.
Contrary to the radius obtained by Parker, the Weber and Davis solution agrees
comparatively better with spacecraft observations on the location of this transonic
point Pei [2007]. This velocity profile will become useful in Chapters 5 and 6
where approximations to the solar wind’s velocity are required.

Finally, note that while the velocity profile has differed considerably in this
analysis compared to the previous section, there is little change to the magnetic
field, particularly at large radii. The radial component is unchanged by Gauss’
Law

Br = B0

(r0

r

)2

(2.54)

According to equation 2.43, for MA � r/rA

uφ ' rΩ
(rA
r

)2

(2.55)

i.e. in the co-rotating frame

u′φ ' rΩ
(rA
r

)2

− rΩ (2.56)

In a similar fashion to the analysis of the Parker model, we can use the streamlines
of the plasma flow and, assuming that the magnetic field is frozen in to the plasma,
we find for the azimuthal component

Bφ = B0
r2

0

r

Ω

u

(
1− rA

r

)2

(2.57)

which is only a second order difference to that of equation 2.21. As was motivated
in Section 2.2, this is an expected result as observations of the HMF generally
agree that the Parker spiral is a valid approximation.

2.4 Structure of the Heliosphere

The previous models on both the solar wind and the HMF have neglected the
pressure exerted by the ISM, which in turn causes numerous features to be cre-
ated. We conclude this chapter by briefly discussing each of these components in
turn. For a more detailed review on the geometry of the heliosphere, the reader
is directed to Owens and Forsyth [2013].
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Pei [2007]

Figure 2.6: The contour plot of equation 2.53 for the radial component of the solar
wind’s velocity profile, as predicted by the Weber and Davis model. The correct
solution, by experimental observations and the choice of boundary conditions, is
given by curve A.
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2.4.1 Termination Shock

Figure 2.1 shows the boundary separating the supersonic and subsonic solar wind,
known as the termination shock. Both the Voyager 1 and Voyager 2 spacecraft
crossed this shock at 94 AU in December 2004 Stone et al. [2005] and at 84 AU in
August 2007 Stone et al. [2008] respectively. Clearly, this implies that this shock is
not perfectly spherical; rather, there is a strong nose-to-tail asymmetry associated
with it. This concept of a blunt termination shock has lead to new theories on
the acceleration of anomalous cosmic rays (ACRs), a particle population that
was introduced in Section 1.2.3. In particular, data from Voyager 1 has found no
evidence of a source of ACRs at the shock Stone et al. [2008]. However, according
to some recent theories, if ACRs are indeed accelerated in this shock geometry,
then they are expected to reach their highest energies at the tail of the shock,
rather than at the nose near to where Voyager 1 made its transition McComas
and Schwadron [2006]. Indeed, data from Voyager 2, which is further from the
nose, shows a higher intensity of ACRs in the vicinity of its crossing, as expected
by the theory Stone et al. [2008]. Whether ACRs are indeed accelerated at the
termination shock, or possibly elsewhere, is still debated.

As Voyager 1 had no working plasma instrument to measure the changing
plasma properties at the shock crossing, the data collected from Voyager 2 is
considered more revealing in detailing changes in both the solar wind and the
HMF. Figure 2.7 shows the daily averages of the magnetic field strength, plasma
density, plasma temperature and the plasma speed observed by Voyager 2 in a
440 day interval, including during its passage through the shock. Primarily due
to variations of the solar wind pressure, the shock is not static; rather, it moves
back and forth under the constantly changing environment. As such, Voyager
2 made numerous crossings of the termination shock during its transit. As this
was on a timescale of hours, these transitions are not shown in the daily averages
of Figure 2.7. The termination shock, denoted TS in the figure, shows a clear
decrease in the solar wind speed. As the shock also compresses and heats the
plasma, there is also an increase in the plasma density and temperature, creating
a turbulent environment in the heliosheath, the region beyond the termination
shock.

2.4.2 Heliopause

Beyond the heliosheath, another transition is found, known as the heliopause,
shown in Figure 2.1. Here, the pressure from the solar wind and the ISM balance,
reducing the solar wind speed to zero. There is an indication that Voyager 1 may
have crossed this boundary in August 2012 Webber and McDonald [2013]. As
there is no working instrument to measure the solar wind speed on Voyager 1,
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Burlaga et al. [2009]

Figure 2.7: Daily averages of various plasma and magnetic properties taken by
Voyager 2 over a period of 440 days beginning in January 1st 2007. Shown is the
magnetic field strength, plasma density, plasma temperature and plasma velocity
respectively. The location of the termination shock, labeled TS, is displayed as a
vertical line. Also shown are two merged interaction regions (MIRs), created by
the merging of co-rotating interactive regions (CIRs).

a drop in the intensity of solar particles (see Figure 2.8a) and an increase in the
intensity of extra-solar particles (see Figure 2.8b) instead signalled the possible
transition.

However, a noticeable change in the magnetic field direction, indicating the
presence of the interstellar magnetic field, was not found Burlaga et al. [2013].
This led to several authors theorising the existence of a possible new transition
layer between the termination shock and the heliopause (see, for example, Mc-
Comas and Schwadron [2012], Fisk and Gloeckler [2013] and Stone et al. [2013]).
Recently, examination of the Voyager data has allowed calculations of the local
plasma density at this layer Gurnett et al. [2013]. This assessment has indicated
a change of density from that of the solar plasma to a density consistent with
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(a) Count rate of solar particles (b) Count rate of cosmic rays

Figure 2.8: The count rate of solar particles and cosmic rays respectively made
by Voyager 1 between October 2011 and August 2012. A noticeable decrease in
solar particles and a corresponding increase in solar particles is observed.

that of the interstellar medium, strongly suggesting that Voyager 1 has indeed
crossed the heliopause. However, it is still not clear as to why the interstellar
magnetic field direction beyond the heliopause is similar to that of the HMF,
with many new theories being put forward (see, for example, Opher and Drake
[2013], Florinski [2013] and Borovikov and Pogorelov [2014]).

2.4.3 Bow Wave

It was generally accepted for decades by the community that the heliosphere was
moving fast enough through the interstellar medium to form a shock at its edge.
Data from the Ulysses spacecraft indicated that the speed of the ISM relative to
the heliosphere is ∼ 26.3 km/s, fast enough for a shock to form Witte [2004].

However, results from the IBEX mission have challenged this view. This is
not a spacecraft in situ; rather, it is a satellite that uses the concept of energetic
neutral atom (ENA) imaging to create a full sky map of the heliosphere. Cos-
mic rays, by their nature, are charged particles, and therefore interact strongly
with the HMF. However, if some of these energetic particles becomes neutral via
charge exchange at the heliospheric boundary, they will remain energetic and not
be deflected by the HMF. The initial direction of these ENAs is preserved as
it can only be altered by gravitational forces, which are considered negligible.
Hence, ENA imaging is considered a powerful tool for mapping the heliosphere,
as was done with IBEX. They calculated a slower speed of 23.2 km/s for the ISM
McComas et al. [2012], corresponding to a speed only large enough to create a
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bow wave, as shown in Figure 2.1.

In this chapter, we have discussed the large scale dynamics of both the solar
wind and the HMF as well as the large scale structure of the heliosphere. However,
fluctuations in these components have so far not yet been considered. As was
discussed in Section 1.3.3, the interaction of particles with both small scale electric
and magnetic waves as well as large scale compressions and rarefactions, which
are ubiquitous in the heliosphere, naturally leads to particle acceleration by the
Fermi process. The resulting spectra of these energetic particles depend strongly
on what field is fluctuating and on what the power spectrum of these fluctuations
are. Early work done in Jokipii [1966] on particle acceleration in the presence
of magnetic fluctuations has led to the application of what is known as quasi-
linear theory (QLT) to other forms of turbulence. In Chapter 3, we will use
this quasi-linear approach to derive an equation describing the propagation and
acceleration of particles in the presence of large-scale compressible fluctuations,
leaving discussion for other possible fluctuating fields until Chapter 4.
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Chapter 3

The Compressional Acceleration
Transport Equation

3.1 Introduction

As the heliosphere is considered poor-collisional (mean free path ∼ 1 AU Marsch
et al. [2001]), particle acceleration is instead mediated by the electromagnetic
fields. The interaction between particles and electromagnetic fields are described
by both Maxwell’s equations

∇ · E =
ρ

ε0
(3.1)

∇× E = −∂B

∂t
(3.2)

∇ ·B = 0 (3.3)

∇×B = µ0J + µ0ε0
∂E

∂t
(3.4)

which describe the electromagnetic fields, and the Boltzmann equation

∂f

∂t
+ V · ∇f + q (E + V ×B) · ∂f

∂p
= 0 (3.5)

which describes the motion of the particle distribution function f(x,p, t) in phase
space. These equations are coupled in a highly non-linear fashion by both the
current and charge densities

ρ(x, t) = q

∫
d3p f(x,p, t) J(x, t) = q

∫
d3p vf(x,p, t) (3.6)

i.e. the particles influence the electromagnetic field and vice versa. Unfortu-
nately, this coupling makes it difficult to solve these equations under general
circumstances. Instead, one must make either one of two assumptions:
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• The test fluctuation approach: We assume we are prescribed the par-
ticle distribution function, and solve for the resulting electromagnetic field

• The test particle approach: We assume we are prescribed the electro-
magnetic field, and solve for the resulting particle distribution function

As we are primarily interested in the evolution of the particles, in particular if
we can obtain a p−5 spectrum, we take the test particle approach. If scattering is
strong enough to make the distribution nearly isotropic in the plasma frame, the
acceleration and transport of non-relativistic energetic particles in the presence of
a background plasma with embedded electromagnetic fields is well approximated
by the Parker transport equation Parker [1965]

∂f

∂t
+ (V + VD) · ∇f︸ ︷︷ ︸

advection

= ∇ · κ · ∇f︸ ︷︷ ︸
spatial diffusion

+
(∇ ·V)

3
p
∂f

∂p︸ ︷︷ ︸
adiabatic cooling

(3.7)

where V is the background plasma velocity, p is the particle momentum, κ is
the spatial diffusion coefficient of small-scale waves and VD is the summation
of all the relevant particle drifts, including those discussed in Section 1.3.2. In
this equation, momentum is measured in the plasma rest frame, with all other
quantities being measured in the spacecraft frame.

We would like to calculate and visualise the effect that each of these terms
has on some initial distribution before tackling the equation in general. However,
before doing so, note that this equation as it is currently expressed does not
explicitly describe the problem at hand in this work, namely the acceleration
due to large scale velocity fluctuations. To include this effect, we take the same
quasilinear approach that was first applied to this concept in Ptuskin [1988] and
as derived in Appendix C, resulting in the following equation

∂f0

∂t
+ V0 · ∇f0 = ∇ · (κ+ κ′) · ∇f0 +

1

p2

∂

∂p

(
p2D′

∂f0

∂p

)
+

(∇ ·V0)

3
p
∂f0

∂p
(3.8)

where

κ′ =
16πκ

3

∫ ∫
dωdk

k4S(w, k)

ω2 + κ2k4
(3.9)

D′ =
8πp2κ

9

∫ ∫
dωdk

k4S(w, k)

ω2 + κ2k4
(3.10)

This transport equation does not include the possibility that particles may
be be lost from the system by e.g. charge exchange. In order to reflect this, a
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catastrophic loss term is added to 3.8 of the form −f/τL, where τL is the loss time.
Dropping the subscript in both f0 and V0 for convenience, our final transport
equation is given by

∂f

∂t
+ V · ∇f = ∇ · (κ+ κ′) · ∇f +

1

p2

∂

∂p

(
p2D′

∂f

∂p

)
+

(∇ ·V)

3
p
∂f

∂p
− f

τL
(3.11)

This equation is the primary tool under which we attempt to explain the observed
p−5 spectra. We return to solve this equation in full for sensible approximations
of the diffusion coefficients in Chapter 5.

Before attempting to solve this transport equation in full, it may be useful to
the reader to first solve some simpler cases of the equation in order to get a feel of
what may happen under more general circumstances. While we can use numerical
methods to solve these equations, if analytical solutions can be arrived at they
are much more desired as they typically give a more physical understanding of
the particle’s temporal evolution. In Appendix D, the spherically symmetric
transport equation for a constant speed V0 is solved to determine the evolution
of the distribution purely due to each of the terms of equation 3.11 separately.

3.2 Finite Difference Methods

While it was possible to find analytic solutions in Appendix D, in general, solving
the full transport equation analytically can only be done in rare occasions. What
makes finding solutions to the more general equation more difficult is

• The inclusion of multiple terms and the interplay between each of them

• Spatially dependent V

• Variable dependent diffusion coefficients

• Replacing the pre-existing source with continuous injection

• Spatially dependent τL

• Careful consideration of suitable boundary conditions

among others. In order to solve the more complicated general equation, we would
like to be able to solve it numerically. One of the most commonly used methods
is a finite difference scheme. In what follows, we give a brief outline of the
method; for a more detailed introduction, there are many excellent textbooks on
the subject available (see, for example, LeVeque [2007] and Thomas [1995]).
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3.2.1 Using the Finite Difference Method to Solve the
Linear Advection Equation

As an example, we use this scheme to solve for the evolution of an initial distri-
bution function purely under advection for a constant speed V0. Assuming the
advection is only in one direction, this equation takes the form

∂f

∂t
+ V0

∂f

∂x
= 0 (3.12)

which is the well known and studied one dimensional linear advection equation.
As we have seen in Section D. 1, this equation is trivial to solve analytically, with
a solution f0(x− V0t) for any initial distribution f0. This makes this equation a
good candidate for testing the finite difference method as the solutions are known
and easy to represent and visualise.

In order to solve this equation using the finite difference scheme, the following
steps are taken

• Discretise the {x, t} domain into finite grid points xj and tk

• Represent the distribution f(x, t) by these discrete points

• Using one of the methods below, estimate ∂f/∂x at each xj at the current
time

• Using the linear advection equation, estimate the corresponding ∂f/∂t

• Using this value, estimate the distribution f(x, t) at the next timestep

• Repeat the above steps until the desired time is reached

To estimate ∂f/∂x, we use what is the key idea behind any finite difference
method in calculating a particular derivative, that is by using a Taylor expansion
to estimate the function at, for example, x+ h, namely

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+ O(h3) (3.13)

If we terminate the summation after the first two terms in our approximation,
then upon rearranging we obtain

∂f

∂x
=
f(x+ h)− f(x)

h
+ O(h) (3.14)

In terms of our numerical grid, if f(x) represents f at the spatial point xj, then
f(x+ h) represents f at the neighbouring spatial point xj+1, which is a distance
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of the grid spacing h away. Hence, our equivalent form of equation 3.14, which
gives us a representation of a derivative in a numerical method, is(

∂f

∂x

)
j,forward

=
fj+1 − fj

h
+ O(h) (3.15)

where h is the grid spacing and f(xj) ≡ fj etc. This particular discretization
is known as the forward difference approximation of the derivative as it uses the
“forward”, i.e. the (j + 1)th, grid point to approximate the derivative, with an
error of O(h). Thus, reducing the grid spacing will result in a more accurate solu-
tion. This will, of course, result in more grid points and thus more computational
time required, so a careful balance between how accurate the solution needs to
be and the time available is ideal.

Equivalently, one may use the Taylor series to estimate f at x− h

f(x− h) = f(x)− h∂f
∂x

+
h2

2

∂2f

∂x2
+ O(h3) (3.16)

which allows us to estimate the derivative as

∂f

∂x
=
f(x)− f(x− h)

h
+ O(h) (3.17)

This equation gives us another way of representing a derivative on a numerical
grid via (

∂f

∂x

)
j,backward

=
fj − fj−1

h
+ O(h) (3.18)

which, as the derivation suggests, is known as the backward difference approxi-
mation.

Finally, there exists another commonly used estimate, the central difference
approximation. If we subtract 3.16 from 3.13, we obtain

f(x+ h)− f(x− h) = 2h
∂f

∂x
+ O(h3) (3.19)

which gives us the approximation(
∂f

∂x

)
j,central

=
fj+1 − fj−1

2h
+ O(h2) (3.20)

As can be seen, the truncation error of this approximation is of the order h2,
making it in principle considerably more accurate than both the forward and
backwards approximations. One can immediately ask as to whether there is any
benefit in ever using either the forward or backward approximations over the
central approximation in solving an equation. We now demonstrate that, even in
an equation as simple as the advection equation, attempting to use the central
approximation over the other possibilities leads to unexpected results.
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FTCS Method One obvious method for solving the advection equation is by
using a forward difference approximation in time (as we need to define the initial
distribution f 0

j ≡ f(x, t = 0)) and a central difference approximation in x (as it
gives the least error), known as the FTCS method (first abbreviated as such by
Roache [1976]). Upon doing so, one obtains

fk+1
j − fkj

∆t
+ V0

fkj+1 − fkj
2∆x

= 0 (3.21)

where ∆t and ∆x are the step sizes in time and space respectively. Rearranging,
we obtain

fk+1
j = fkj −

α

2
(fkj+1 − fkj ) (3.22)

where α ≡ V0∆t/∆x. This gives us a relation on how to obtain the updated
distribution at the next time step. Applying this FTCS method to a simple
initial Gaussian in x, with vanishing boundary conditions, one would expect to
obtain the same Gaussian shifted to the right as seen in Section D. 1. However, as
can be seen in Figure 3.1, this is not the case: as we advect the Gaussian further
in time, the solution seems to become more and more unstable, with information
about the original function already being fully masked by t = 5 as in Figure 3.2.
The reason for this, and the conditions under which this instability happens, will
now be outlined.

Von Neumann Stability Analysis In order to determine when and why the
FTCS method becomes unstable, we use a method that was first theorised in
Crank et al. [1947] and was later improved upon in Charney et al. [1950]. Here,
we trial a solution of the form

f(x, t) = z(t)eimx (3.23)

where z(t) is the growth factor and i ≡
√
−1. According to this approach (see

LeVeque [2007]), the solution will be stable if the amplification factor ξ satisfies
|ξ| < 1, where ξ ≡ zk+1/zk at the kth timestep. Inserting this trial solution into
equation 3.22, we obtain

zk+1eimj∆x = zkeimj∆x − V0∆t

2∆x
(zkeim(j+1)∆x − zkeim(j−1)∆x)

= zkeimj∆x
[
1− V0∆t

2∆x

(
eim∆x − e−im∆x

)]
= zkeimj∆x

(
1− V0∆t

∆x
i sin(m∆x)

) (3.24)
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Figure 3.1: The evolution of a Gaussian under the linear advection equation de-
fined by equation 3.12 approximated by the FTCS method of equation 3.22 at four

different times. The initial Gaussian is defined as f0(x) =
√

1
2π

exp
(
− (x−7.5)2

2

)
and there is vanishing boundary conditions. There is a speed of V0 = 1, a spatial
step of ∆x = 0.015 and temporal timesteps of ∆t = 0.001, 0.002, 0.003 and 0.004
respectively. Initially, the Gaussian advects to the right as expected. Eventu-
ally, however, this function becomes unstable, as is seen at t = 4. Instability is
guaranteed in all applications of the FTCS method to the advection equation,
independent of the initial function and the grid size and spacings.
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Figure 3.2: The evolution of a Gaussian under the linear advection equation
defined by equation 3.12 approximated by the FTCS method of equation 3.22

after a time t = 5. The initial Gaussian is defined as f0(x) =
√

1
2π

exp
(
− (x−7.5)2

2

)
and there is vanishing boundary conditions. There is a speed of V0 = 1, a spatial
step of ∆x = 0.015 and a temporal timestep of ∆t = 0.005. The expected
solution is that the shape of the initial function is shifted to the right; however, the
instability of the scheme has grown to the extent that we have lost all information
about the original distribution.
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Thus, upon dividing, we find that the amplification factor ξ is given by

ξ = 1− V0∆t

∆x
i sin(m∆x) (3.25)

and hence

|ξ| =

√
1 +

(
V0∆t

∆x

)2

sin2(m∆x) (3.26)

which is > 1 for all combinations of V0, ∆t and ∆x. It is thus said that the FTCS
method is unconditionally unstable. Therefore, although it would appear that
the FTCS method is ideal due to its high accuracy, it cannot be used due to the
instability of its solutions.

Upwind Method In the FTCS method, we used a central difference approxi-
mation to estimate the spatial derivative. However, knowing that the solution is
the initial distribution shifted to the right, we know that there must be a bias in
one of the directions, i.e. fj−1 and fj+1 do not hold the same level of importance
and indeed information. (This is also why we used a forward time approxima-
tion, as typically we start at t = 0 with time increasing and not decreasing).
This thus motivates us to approximate the spatial derivative instead with a for-
ward/backward approximation. This method is known as the Upwind scheme,
first theorised by Courant et al. [1952], as it skews the derivative in the “upwind”
direction, as follows

fk+1
j − fkj

∆t
+ V0

fkj − fkj−1

∆x
= 0 for V0 > 0 (3.27)

fk+1
j − fkj

∆t
+ V0

fkj+1 − fkj
∆x

= 0 for V0 < 0 (3.28)

Here, we take the first approximation as we are interested in cases when V0 > 0
(Note, however, that the adiabatic cooling term is closely related to an advection
term with a V0 < 0). Upon applying a stability analysis (see LeVeque [2007]), we
find that the Upwind method is conditionally stable, i.e. that it is stable when

V0∆t

∆x
≤ 1 (3.29)

This is known as the Courant-Friedrich-Lewy (CFL) stability criterion, a condi-
tion that states that the the time step must be smaller than the time taken for
the distribution to travel the distance of the spatial step. In fact, it is a criterion
that all explicit schemes must satisfy in order to obtain stable solutions to the
advection equation (see Thomas [1995]).
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Solutions to the advection equation upon using the Upwind scheme, with the
CFL condition satisfied, are shown in Figure 3.3. As can be seen, the solutions
are indeed stable. However, the amplitude of the Gaussians seem to be decreasing
as time increases. The reason for this “damping” is best understood by returning
to the original Taylor expansions. If we instead explicitly keep the second order
term in equation 3.16, then the spatial derivative is given by(

∂f

∂x

)
j

=
fj − fj−1

h
+
h

2

∂2f

∂x2
+ O(h2) (3.30)

The second term on the right is of course a diffusive term, thus giving rise to the
damping of our Gaussian. Of course, this is also why no damping was seen in
the application of the FTCS scheme as, according to equation 3.19, the diffusive
terms cancel out. One of the primary methods used to reduce this unwanted
effect of false diffusion is by decreasing the step sizes, and thus increasing the
mesh density. As can be seen in Figure 3.4, this can be very successful and can
almost remove the effect entirely. Another method, which we will see in what
follows, is to use approximations of an even higher accuracy.

3.2.2 Higher Order Derivatives and Higher Order Accu-
racy

One can also use the Taylor expansions to approximate higher order derivatives.
For example, if we first expand equations 3.13 and 3.16 to the third order term

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+
h3

3

∂3f

∂x3
+ O(h4) (3.31)

f(x− h) = f(x)− h∂f
∂x

+
h2

2

∂2f

∂x2
− h3

3

∂3f

∂x3
+ O(h4) (3.32)

and add these equations together

f(x+ h) + f(x− h) = 2f(x) + h2∂
2f

∂x2
+ O(h4) (3.33)

we obtain
∂2f

∂x2
=
f(x+ h)− 2f(x) + f(x− h)

h2
+ O(h2) (3.34)

i.e., in terms of our mesh grid(
∂2f

∂x2

)
j,central

=
fj+1 − 2fj + fj−1

h2
+ O(h2) (3.35)
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Figure 3.3: The evolution of a Gaussian under the linear advection equa-
tion defined by equation 3.12 approximated by the Upwind method of equa-
tion 3.27 at four different times. The initial Gaussian is defined as f0(x) =√

1
2π

exp
(
− (x−7.5)2

2

)
and there is vanishing boundary conditions. There is a speed

of V0 = 1, a spatial step of ∆x = 0.15 and temporal timesteps of ∆t = 0.001,
0.002, 0.003 and 0.004 respectively. The evolution remains stable in each case,
however there is a damping of the function, reducing the amplitude of the Gaus-
sian over time. The CFL condition, defined by 3.29, is met in each case, with CFL
numbers of 0.0066, 0.0132, 0.0198 and 0.0264 respectively. Stability is guaranteed
in all applications of the Upwind method to the advection equation, independent
of the initial function, as long as the CFL condition is met.
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Figure 3.4: The evolution of a Gaussian under the linear advection equation de-
fined by equation 3.12 approximated by the Upwind method of equation 3.27 at
four different times for two different spatial step sizes. The initial Gaussian is de-

fined as f0(x) =
√

1
2π

exp
(
− (x−7.5)2

2

)
and there is vanishing boundary conditions.

There is a speed of V0 = 1, spatial steps as defined above and temporal timesteps
of ∆t = 0.001, 0.002, 0.003 and 0.004 respectively. The evolution remains stable
in each case, however there is a damping of the function, reducing the amplitude
of the Gaussian over time. However, this unwanted damping affect seems to di-
minish for smaller mesh spacings. The CFL condition, defined by equation 3.29,
is met in each case, with CFL numbers of 0.0066, 0.0132, 0.0198 and 0.0264 for
the dashed lines and of 0.0667, 0.1333, 0.2000 and 0.2667 for the non-dashed lines
respectively. Stability is guaranteed in all applications of the Upwind method to
the advection equation, independent of the initial function, as long as the CFL
condition is met.
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In a similar fashion, we can find corresponding forwards and backwards represen-
tations by first writing Taylor expansions of f(x+ 2h) and f(x− 2h)

f(x+ 2h) = f(x) + 2h
∂f

∂x
+

4h2

2

∂2f

∂x2
+

8h3

3

∂3f

∂x3
+ O(h4) (3.36)

f(x− 2h) = f(x)− 2h
∂f

∂x
+

4h2

2

∂2f

∂x2
− 8h3

3

∂3f

∂x3
+ O(h4) (3.37)

and then calculating the following

f(x+ 2h)− 2f(x+ h) = h2∂
2f

∂x2
− f(x) + O(h3) (3.38)

f(x− 2h)− 2f(x− h) = h2∂
2f

∂x2
− f(x) + O(h3) (3.39)

where we have used equations 3.31, 3.32, 3.36 and 3.37. Hence, in terms of our
mesh grid, we obtain(

∂2f

∂x2

)
j,forward

=
fj+2 − 2fj+1 + fj

h2
+ O(h) (3.40)

(
∂2f

∂x2

)
j,backward

=
fj−2 − 2fj−1 + fj

h2
+ O(h) (3.41)

respectively. These approximations can be useful in approximating any diffusive
type behaviour, e.g. spatial and momentum diffusion in the transport equation.

As we have seen so far, our approximations have been limited to being of order
h2 accurate at best. In order to achieve even higher accuracy, more neighboring
mesh points are needed. Expanding 3.13, 3.16, 3.36 and 3.37 to their fourth order
terms

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+
h3

3

∂3f

∂x3
+
h4

4

∂4f

∂x4
+ O(h5) (3.42)

f(x− h) = f(x)− h∂f
∂x

+
h2

2

∂2f

∂x2
− h3

3

∂3f

∂x3
+
h4

4

∂4f

∂x4
+ O(h5) (3.43)

f(x+ 2h) = f(x) + 2h
∂f

∂x
+

4h2

2

∂2f

∂x2
+

8h3

3

∂3f

∂x3
+

16h4

4

∂4f

∂x4
+ O(h5) (3.44)

f(x− 2h) = f(x)− 2h
∂f

∂x
+

4h2

2

∂2f

∂x2
− 8h3

3

∂3f

∂x3
+

16h4

4

∂4f

∂x4
+ O(h5) (3.45)

we find that, after some cancellations

8[f(x+ h)− f(x− h)]− [f(x+ 2h)− f(x− 2h)] = 12h
∂f

∂x
+ O(h5) (3.46)
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and hence, in terms of our grid(
∂f

∂x

)
j,central

=
8(fj+1 − fj−1)− (fj+2 − fj−2)

12h
+ O(h4) (3.47)

which is a fourth order central approximation to the first derivative. Compared to
the second order central approximation given by 3.20, more neighbouring points
were needed in order to achieve greater accuracy. Similar approximations can be
found for forward/backward approximations as well as for higher order deriva-
tives if required (see LeVeque [2007]). These better approximations will be used
in Chapter 6 where we numerically solve equation 3.8 and compare it to our
analytically obtained solutions.

One can also ask whether it is possible to find a scheme that is unconditionally
stable, i.e. stable for any mesh spacings (but not necessarily accurate) and not
limited by e.g. the CFL condition. Implicit methods are such schemes. Rather
than going into detail here, we instead present an application of the transport
equation where an implicit method is used in order to obtain a solution. Again,
for a more detailed explanation, see LeVeque [2007].

3.3 An Application of the Parker Transport Equa-

tion: Solar Modulation of Galactic Cosmic

Rays

As was discussed in Section 3.1, the general Parker transport equation can be
applied to a large number of different astrophysical events. Before applying this
equation to this work’s objective, we would first like to give a different but im-
portant example of how it can be used. This will show us just how powerful the
equation is and further emphazises its applicability in vastly different environ-
ments, as well as giving an example of how to use finite difference methods for a
more complicated form of the transport equation than those of Section 3.2.

Due to the low density of matter in space, most cosmic rays that originate
from outside the heliosphere travel from their source to our own solar system
with little interaction. However, due to the presence of the solar wind, the flux
of cosmic rays is modulated (altered) before being detected by a spacecraft or a
ground-based detector. This modulation must be taken into account if we are to
know its original spectrum and thus determine if the theories that we have for
the acceleration of cosmic rays of both a galactic and extra-galactic origin are
indeed correct. Neglecting drifts, the modulation is governed by:

∂f

∂t
+ V · ∇(f) = ∇ · κ · ∇f +

1

3
∇ ·Vp∂f

∂p
(3.48)
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where we have assumed that losses and momentum diffusion of these galactic
and extra galactic cosmic rays are negligible. If we then further impose that the
solar wind velocity is spatially independent and that the system is spherically
symmetric, a steady state solution is given by

V0
∂f

∂r
=

1

r2

∂

∂r

(
r2κ

∂f

∂r

)
+

2V0

3r
p
∂f

∂p
(3.49)

An added benefit of making these assumptions is that, if we assume κ is mo-
mentum independent, this equation is now solvable analytically. Multiplying by
4πp2dp and integrating, we obtain

V0
∂n

∂r
=

1

r2

∂

∂r

(
r2κ(r)

∂n

∂r

)
+

2V0

3r

∫
4πp3∂f

∂p
dp (3.50)

where n(r) =
∫

4πp2f(r, p)dp is the particle number density. Integrating the last
term by parts and assuming that f → 0 as p→∞

V0
∂n

∂r
=

1

r2

∂

∂r

(
r2κ(r)

∂n

∂r

)
− 2V0

r
n (3.51)

These three terms can be combined into one

1

r2

d

dr

[
r2

(
κ(r)

dn

dr
− V0n

)]
= 0 (3.52)

which has a solution

n(r) = n(rmax) exp

[
−V0

∫ rmax

r

1

κ(r)
dr

]
(3.53)

for a particular choice of κ(r). Thus, the number density of unmodulated particles
at r = rmax are exponentially reduced as governed by equation 3.53.

If we relax the restriction on κ and allow it to be momentum dependent, a
numerical approach is required. We may rewrite equation 3.49 as

∂f

∂y
= α

∂2f

∂2r
+ β

∂f

∂r
(3.54)

where y = ln p and

α = −3κr

2V0

β =
3r

2
− 3κ

V0

− 3r

2V0

∂κ

∂r
(3.55)

This equation is now solvable numerically for a suitable choice of κ(r, p). The
finite difference scheme we choose to use is what is known as the Crank Nicolson
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method, an implicit algorithm first put forward in Crank et al. [1947]. We begin
by setting up a grid of points (i, j), where i represents radial distance and j the
log of momentum. We use this grid to approximate our derivatives as follows

∂f

∂y
=
f j+1
i − f ji

∆y
(3.56)

∂2f

∂r2
=

1

2(∆r)2
[(f j+1

i+1 − 2f j+1
i + f j+1

i−1 ) + (f ji+1 − 2f ji + f ji−1)] (3.57)

∂f

∂r
=

1

2(∆r)

[
1

2
(f j+1
i+1 − f

j+1
i−1 ) +

1

2
(f ji+1 − f

j
i−1)

]
(3.58)

where f ji has the usualy meaning of the value of f at the i-th radial distance
and j-th log of momentum and ∆r and ∆y are the radial and ln p grid spacings
respectively. Here, we have taken a forward approximation for the momentum
derivative and have averaged over central difference approximations at the jth
and (j + 1)th steps for the spatial derivatives.

Inserting these into equation (3.54) and rearranging, we obtain:

(−σji + ξji )f
j+1
i−1 + (1 + 2σji )f

j+1
i + (−σji − ξ

j
i )f

j+1
i+1 (3.59)

= (σji − ξ
j
i )f

j
i−1 + (1− 2σji )f

j
i + (σji + ξji )f

j
i+1 (3.60)

where:

σji =
αji (∆y)

2(∆r)2
ξji =

βji (∆y)

4(∆r)
(3.61)

This is simply a matrix equation of the form Ax = B
b1 c1

a2 b2 c2

. . . . . . . . .

ai bi ci
. . . . . . . . .




f j+1

1

f j+1
2
...

f j+1
i
...

 =


d1

d2
...
di
...


where A is a tridiagonal matrix with components ai = −σji + ξji , bi = 1 + 2σji ,
ci = −σji − ξ

j
i and di = (σji − ξ

j
i )f

j
i−1 + (1− 2σji )f

j
i + (σji + ξji )f

j
i+1 . This is solved

for x, i.e. for f at the (j+1)th time step, using the tridiagonal matrix algorithm,
also known as the Thomas Algorithm. This matrix solver is usually preferred over
the traditional Gaussian elimination approach for solving a tridiagonal system of
equations due to its efficiency: O(n) computations are required compared to O(n3)
for Gaussian elimination Mooney and Swift [1999].
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Sensible boundary conditions were chosen: at the outer radius, we set the
distribution function to the unmodulated spectrum (f(p, rmax) = f0(p)) used
by Fisk [1976], namely f0(p) ∝ (m2

0c
4 + p2c2)−1.8/p, where c is the speed of

light and m0 is the mass of the cosmic rays, which we assume are protons. We
also assume that the most energetic particles are unaffected by the solar wind
(f(pmax, r) = f0(pmax)). Zero gradient is assumed at the remaining boundaries.
Our choice of the spatial diffusion coefficient is κ(p, r) ∝ p2er/r0 taken from Fisk
[1971], where r0 = 1 AU.

The resulting modulated spectrum is shown in Figure 3.5. As one would
expect, the intensity of cosmic rays has decreased due to this interaction with the
solar wind, with this reduction in intensity increasing as we go further into the
heliosphere. Also, notice that the effect becomes gradually less for more energetic
particles that are more or less unaffected.

The model presented above is a very simple model which was originally done
by Fisk [1971]. Solar modulation theory has greatly improved since then by taking
into account the spatial dependence in the solar wind, particle drifts, latitude
dependence among other factors (for a review on current solar modulation theory,
see Potgieter [2013]). As we have mentioned, the purpose of this section is not
to give an exact theory for solar modulation, more as to give an example of
the usefulness of the transport equation as well as testing our theories on finite
difference methods in preparation for applying it in later chapters.
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Figure 3.5: The resulting solar modulated spectra of galactic cosmic ray protons
due to the model described by equation 3.54 at five different locations. The
unmodulated spectrum, given by f0(p) ∝ (m2

0c
4 +p2c2)−1.8/p, is also plotted. The

inner and outer radii are taken as 0.01 AU and 25 AU respectively. Equation 3.54
was solved using the numerical Crank Nicolson method with step sizes of 0.025×1
AU and 0.0052 in space and the logarithm of momentum respectively. The spectra
become more modulated with increased distance from the outer boundary, with
particles at lower energies being modulated greatest.
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Chapter 4

The Suprathermal Tail: Current
Theories

4.1 Introduction

Now that we have presented the analytical and numerical methods needed to
describe particle acceleration in the heliosphere, we return to the problem at hand
in this work: the origin of the suprathermal tail. As was discussed in Section 1.4,
this population of particles appears to have a universal p−5 power law spectrum,
independent of the acceleration environment, albeit with slight deviations from a
−5 spectral index in some observations.

Diffusive shock acceleration, as was discussed in Section 1.3.4, would appear
to be a good candidate. As we discovered, it naturally leads to power law spectra,
with the power law index depending only on the shock compression ratio r and
not on the local environment. The resulting spectra take the form f ∝ p−α,
where α = 3r/(r − 1). Therefore, a shock compression ratio of 2.5 is required
to create the observed p−5 spectrum. However, it is not evident in the literature
as to why a compression ratio of 2.5 should be a common occurrence. Also, as
was discussed in Section 1.4, in particular in Figure 1.5, this p−5 spectrum is
also observed during quiet times, where there are little to no shocks. Thus, we
rule out diffusive shock acceleration as a possible explanation of this universal
spectrum.

Instead, we consider that the origin of the suprathermal tail could be of a
stochastic nature. Non-Fermi type mechanisms (e.g. merging of magnetic islands
Drake et al. [2013]) are not considered. Stochastic acceleration is typically divided
into two types, depending on the size of the waves: small scale modes, where the
wavelength of the fluctuations are comparable to or smaller than the particle
mean free path; and large scale modes, where the turbulent scales are generally
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larger than the mean free path. Also, these categories are commonly further
sub-divided into both compressible and incompressible modes. Hence, stochastic
acceleration is typically classified under four distinct varieties

• acceleration by small-scale incompressible fluctuations

• acceleration by small-scale compressible fluctuations

• acceleration by large-scale incompressible fluctuations

• acceleration by large-scale compressible fluctuations

As we are primarily interested in large-scale compressible fluctuations, we
shall leave the discussion of the other three branches to Appendix E where we
summarise their relevance to the suprathermal tail. In Section 4.3, we go into
great detail on the theory behind large-scale compressible modes, deriving its
importance for ranges of the free parameters that have not previously been con-
sidered in the literature. Before doing so, we shall first introduce an abstract
form of traditional stochastic acceleration in Section 4.2, referred to as a “pump
mechanism”, that is believed to be behind the recent reinvigoration of the concept
that compressible turbulence could be behind the creation of these suprathermal
particles.

4.2 The Pump Mechanism of Fisk & Gloeckler

In a series of papers Fisk and Gloeckler [2006, 2007, 2008, 2009, 2012, 2013, 2014];
Fisk et al. [2010], Fisk & Gloeckler have presented a new theory to explain the
origin of this tail. Figure 4.1 shows the basic principles behind their mechanism.
A population of core particles e.g. pick-up ions, with speeds greater than the
thermal speeds of the background plasma, is shown. The background thermal
plasma, which contains most of the mass, also contains random compressions and
expansions. Particles with speeds above a “threshold speed” vth are considered
the tail particles. The threshold speed is defined as the following: particles above
(below) vth are able (unable) to spatially diffuse.

In a compression region, particles within the core population gain energy and
cross the threshold boundary. Particles in the tail region are also compressed and
raised in energy, as demonstrated by the larger maximum speed in compression
regions compared to expansion regions. In the region of an expansion, the op-
posite situation occurs: particles in the tail lose energy and flow back into the
core.

Overall, spatial gradients are created. This causes tail particles, which are
able to spatially diffuse, to respond to the gradients. In the compression regions,
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Fisk et al. [2010]

Figure 4.1: A diagram of the “pump mechanism” of Fisk & Gloeckler. The
thermal background, with speeds less than the core particles and which contains
random compressions and expansions, is not shown. The core particles are defined
as having speeds above the thermal background and below a threshold speed vth.
The tail particles, defined as particles with speeds v ≥ vth, are able to spatially
diffuse.
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a fraction of the tail particles diffuse out of the system, while others diffuse into
the expansion regions. Compression regions then become expansion regions and
vice versa, and the process is repeated. However, as a fraction of the particles
have escaped from the tail region, there will be less particle returning to the core.
This is a classic “pump mechanism” of particles to higher energies. An important
difference between this mechanism and traditional stochastic acceleration should
be highlighted. In a conventional stochastic acceleration event, particles gain
energy via the damping of the turbulence. In this mechanism, however, the
turbulence is not the source of the energy. Rather, energy is merely redistributed
from the core to the tail.

Upon applying a quasi-linear analysis to the Parker transport equation for this
procedure, similar to that of Section 3.1, Fisk & Gloeckler obtain an equation
describing the evolution of the particle distribution function of the form

∂f

∂t
=

1

p4

∂

∂p

(
δV 2

9κ
p
∂

∂p
(p5f)

)
− δV · ∇f − 5

3
(∇ · δV)f (4.1)

which, assuming that the spatial diffusion coefficient is a power law in momentum
(κ = κ0p

σ), has a solution

f(p) = f0

(
p

pth

)−5

exp

(
− 9κ

σ2δV 2t

)
(4.2)

where f0 is a normalisation factor and pth is the particle momentum at the thresh-
old speed vth. Thus a p−5 spectrum is created with an exponential rollover at
higher speeds. This spectrum is universal in the sense that it is not sensitive to
the environment: all that is required is the presence of a core particle population
and a thermal background containing random compressions and expansions.

However, numerous authors have criticised the method at which Fisk & Gloeck-
ler obtain equation 4.1. In particular, Jokipii and Lee [2010] highlighted their
unconventional treatment of spatial diffusion. Rather than using the standard
spatial diffusion term ∇ · κ · ∇f , they have instead approximated it as a loss
term of the form −f/τ . An application of the pump mechanism with a conven-
tional spatial diffusion term has not been considered in the literature.

4.3 Acceleration by Large-Scale Compressible

Modes

We now return our attention to the stochastic acceleration of particles in the
presence of large scale compressional fluctuations. Before solving the transport
equation derived for this particular mode, given by equation 3.11 with coefficients
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3.9 and 3.10, we look at another approach that was taken in Jokipii and Lee
[2010], herein referred to as J10. Once again, quasi-linear theory is used, writing
each quantity as a background term and a fluctuation, e.g. V = V0 + δV with
δV� V. Applying this to the Parker transport equation given by equation 3.7,
we once again obtain in the plasma frame, neglecting drifts

∂f

∂t
+ δV · ∇f = ∇ · κ · ∇f +

(∇ · δV)

3
p
∂f

∂p
(4.3)

To obtain a purely momentum diffusion-type equation, J10 assumes that the
background quantities are spatially independent, e.g. f(x, t, p) = f0(p, t) +
δf(x, p, t) with δf � f . Thus

∂f0

∂t
+
∂δf

∂t
+���

��δV · ∇f0 + δV · ∇δf =((((
((∇ · κ · ∇f0 +∇ · κ · ∇δf

+
(∇ · δV)

3
p
∂f0

∂p
+

(∇ · δV)

3
p
∂δf

∂p
(4.4)

where the canceled terms are due to the assumed spatial independence of f0.
We now ensemble average, where the fluctuating quantities once again satisfy
< δA >= 0, < (δA)2 >6= 0

∂f0

∂t
+
��

�
��

<
∂δf

∂t
>+ < δV · ∇δf >=((((

((((
(

< ∇ · κ · ∇δf >+
��

���
���

��

<
(∇ · δV)

3
p
∂f0

∂p
>

+ <
(∇ · δV)

3
p
∂δf

∂p
> (4.5)

giving
∂f0

∂t
+ < δV · ∇δf >=<

(∇ · δV)

3
p
∂δf

∂p
> (4.6)

where, as before, all first order terms have averaged to zero. Inserting the same
relation as before, namely

<
(∇ · δV)

3
p
∂δf

∂p
>=

1

3p2

∂

∂p
< (∇ · δV)p3δf > − < (∇ · δV)δf) > (4.7)

we obtain
∂f0

∂t
+((((

((((
(

< ∇ · (δVδf) > =
1

3p2

∂

∂p
< (∇ · δV)p3δf > (4.8)

where < ∇ · (δVδf) > is typically assumed to be unimportant in a quasi-linear
analysis if spatial homogeneity is assumed (see Fisk et al. [2010] for more details).
Thus

∂f0

∂t
=

1

3p2

∂

∂p
< (∇ · δV)p3δf > (4.9)
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Subtracting this from equation 4.3

∂f

∂t
− ∂f0

∂t
+ δV · ∇f = ∇ · κ · ∇f +

(∇ · δV)

3
p
∂f

∂p

−
���

���
���

���
��

1

3p2

∂

∂p
< (∇ · δV)p3δf > (4.10)

where, as before, we have removed second order terms. Hence

∂δf

∂t
+���

��δV · ∇f0 +���
��δV · ∇δf =((((

((∇ · κ · ∇f0 +∇ · κ · ∇δf

+
(∇ · δV)

3
p
∂f0

∂p
+
��

���
���(∇ · δV)

3
p
∂δf

∂p
(4.11)

giving
∂δf

∂t
= ∇ · κ · ∇δf +

(∇ · δV)

3
p
∂f0

∂p
(4.12)

where we have once again removed second order terms and assumed the spatial
independence of f0. This is equivalent to the previously obtained equation C.9 if
we assume spatially independent background quantities. To solve this equation,
rather than using the Fourier transform technique as was used in Section 3.1, J10
instead uses the concept of Green’s functions. According to this technique, the
solution to equation 4.12 is given by

δf(x, t) =
1

3

∫ ∫
d3x′ dt′ G(x, t,x′, t′)(∇′ · δV′)p∂f0(p, t′)

∂p
(4.13)

where G(x, t,x′, t′) satisfies:

∂G

∂t
= ∇ · κ∇G+ δ(x− x′)δ(t− t′) (4.14)

For a spatially independent diffusion coefficient κ(p), equation 4.14 has a typical
“heat kernel” solution of the form

G(x, t,x′, t′) =
1

[4πκ(t− t′)]3/2
exp

[
− |x− x′|2

4κ(t− t′)

]
(4.15)

for t > t′. Inserting this δf back into equation 4.9, we obtain

∂f0

∂t
=

1

p2

∂

∂p

(
p2D

∂f0

∂p

)
(4.16)

which is a purely momentum diffusion-type equation, with a coefficient of the
form

D =
p2

9

∫ ∫
d3x′ dt′ G(x, t,x′, t′)〈(∇ · δV)(∇′ · δV′)〉 (4.17)
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where G(x, t,x′, t′) is given by equation 4.15. To make further progress, we must
make an assumption on the form of the two-point correlation function 〈(∇ ·
δV)(∇′ · δV′)〉. As was done in J10, we assume that it is spatially Gaussian and
temporally in the form of an exponential decay, i.e.

〈(∇ · δV)(∇′ · δV′)〉 = 〈(∇ · δV)2〉 exp

[
−|x− x′|2

 L2 − t− t′

T

]
(4.18)

where  L and T are the scale length and times of the correlations respectively.
Inserting equation 4.15 for the Green’s function and equation 4.18 for the corre-
lation function, and making using of the following relation∫ ∞

−∞
e−ax

2

dx =

√
π

a
(4.19)

we obtain from equation 4.17 for the diffusion coefficient

D =
p2

9
〈(∇ · δV)2〉

∫ ∞
0

dτ exp
(
− τ
T

)(
1 +

4κτ

 L2

)−3/2

(4.20)

where τ ≡ t− t′. To solve the above, we make a change of variables

x =

√
1 +

4κτ

L2
(4.21)

which simplifies the integral as

D =
p2

9
〈(∇ · δV)2〉L

2

2κ
exp

(
L2

4κT

)∫ ∞
1

dx x−2 exp

(
−L

2x2

4κT

)
(4.22)

Using the relation ∫
e−ax

2

x2
= −
√
π
√
a erf(

√
ax)− 1

x
e−ax

2

(4.23)

this can be integrated to obtain

D =
p2

9
〈(∇ · δV)2〉  L

2

2κ

{
1− π1/2  L√

4κT
erfcx

(
 L√

4κT

)}
(4.24)

where erfcx(x) = ex
2
(1− erf(x)) is the scaled complimentary error function. J10

then analytically solves the momentum diffusion equation for particular limits of
this diffusion coefficient, resulting in coefficients of the form D ∝ pα.

Instead, for the sake of completeness, we numerically solve it for the more
general coefficient given by equation 4.24. To differentiate even further from the
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previous sections, rather than evolving an initial distribution, we instead assume
that there is an injection of mono-energetic particles with momentum p0, resulting
in an equation of the form

∂f0

∂t
=

1

p2

∂

∂p

(
p2D

∂f0

∂p

)
+Q0δ(p− p0) (4.25)

where p0 is the injection momentum.
We begin by normalising the variables as

ỹ = ln p̃ = ln

(
p

p0

)
t̃ =

t

t0
(4.26)

where p0 is the aforementioned injection momentum, and t0 is defined as

t0 =

(
〈(∇ · δV)2〉  L2

2κ0

)−1

(4.27)

We also assume that the spatial diffusion coefficient is a power law in momentum,
i.e. κ(p) = κ0p̃

a, Thus, equation 4.16 reduces to

∂f0

∂t̃
= e−3ỹ ∂

∂ỹ

(
eỹD̃

∂f0

∂ỹ

)
+
Q0

p0

δ(ỹ) (4.28)

with a diffusion coefficient of the form

D̃ =
e(2−a)ỹ

9
[1− π1/2η1/2e−aỹ/2erfcx(η1/2e−aỹ/2)] (4.29)

where we have defined η =  L2/4κ0T . Hence, we see that we have two free
parameters: the spatial diffusion index a and the quantity η , which depends on
both the correlation scales and the magnitude of κ. Figures 4.2 & 4.3 are plots of
the momentum diffusion coefficient D̃, where we have varied a and η respectively.

We numerically solve equation 4.28 for the temporal evolution of the distribu-
tion function for particular choices of these free parameters. To do so, we employ
the Crank Nicolson method that was introduced in Section 3.3, resulting in a
finite difference equation of the form

(−αi)f j+1
i−1 + (1 + αi + βi)f

j+1
i + (−βi)f j+1

i+1

= (αi)f
j
i−1 + (1 + αi + βi)f

j
i + (βi)f

j
i+1

(4.30)

with elements

αi =
e−3ỹi

2(∆ỹ)2
eỹi−1/2D̃i−1/2 βi =

e−3ỹi

2(∆ỹ)2
eỹi+1/2D̃i+1/2 (4.31)

where

ỹi−1/2 = ỹ − ∆ỹ

2
ỹi+1/2 = ỹ +

∆ỹ

2
D̃i−1/2 = D̃i(ỹi−1/2) D̃i+1/2 = D̃i(ỹi+1/2)

(4.32)
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Figure 4.2: The momentum diffusion coefficient as derived in Jokipii and Lee
[2010], given by equation 4.29. The spatial diffusion coefficient power law index
a is varied while the η parameter is fixed to η = 1.
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Figure 4.3: The momentum diffusion coefficient as derived in Jokipii and Lee
[2010], given by equation 4.29. The η parameter is varied while the spatial diffu-
sion coefficient power law index a is fixed to a = 0.5.
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a = 0 We begin by looking at a spatial diffusion coefficient independent of mo-
mentum, corresponding to a = 0. In this case, the momentum diffusion coefficient
is D̃ = D0p̃

2, where D0 = [1 − π1/2η1/2erfcx(η1/2)]/9. Figure 4.4 shows the evo-
lution of the spectrum for a diffusion coefficient of this type, which eventually
relaxes to the asymptotic solution given analytically by

f(p̃, t̃→∞) =


Q0

3D0p0

p̃ ≤ 1

Q0

3D0p0

p̃−3 p̃ > 1
(4.33)

The rate at which the distribution reaches this asymptotic shape depends strongly
on the value of η, as is seen by comparing Figure 4.4, where η = 1, to Figure 4.5,
where η = 10.

η � p̃a For x � 1, the scaled complimentary error function may be approxi-
mated as

erfcx(x) =
1√
πx

(
1− 1

2x2
+ . . .

)
(4.34)

and thus, for η � p̃a, the diffusion coefficient given by equation 4.29 can be
approximated by

D̃ =
p̃2−a

9

[
1− π1/2η1/2p̃−a/2

(
1

π1/2η1/2p̃−a/2

)(
1− 1

2ηp̃−a
+ . . .

)]
=
p̃2−a

9

(
1

2ηp̃−a

)
=

p̃2

18η

(4.35)

Hence, in this limit, we once again obtain D = D0p̃
2, this time with D0 =

1/18η. Therefore, the same steady state solution is obtained as in the case of a
momentum independent spatial diffusion coefficient. However, due to the different
η dependence of D0, the distribution converges to a p̃−3 power law at a different
rate (see Figures 4.6 and 4.7).

A similar diffusion coefficient was obtained in Zhang [2010] for particle accel-
eration in the presence of a train of compressive waves. The appeal of using a
wave train is that a quasi-linear assumption is not required. Assuming the size of
each compression region is a lot less than the diffusion length κ/V0, a momentum
diffusion equation is obtained with coefficient

D =
p2

9

(∆V )2

λV0

(4.36)
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Figure 4.4: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28.
The spatial diffusion coefficient is assumed to be momentum independent, re-
sulting in a D = D0p

2 momentum diffusion coefficient. D0 depends on the η
parameter, which here is taken as η = 1. The distribution eventually relaxes to
the steady state solution given by equation 4.33 after a time t ∼ 102t0, where t0
is defined by equation 4.27.
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Figure 4.5: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28.
The spatial diffusion coefficient is assumed to be momentum independent, re-
sulting in a D = D0p
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parameter, which here is taken as η = 10. The distribution eventually relaxes to
the steady state solution given by equation 4.33 after a time t ∼ 103t0, where t0
is defined by equation 4.27.
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Figure 4.6: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28. As
η (= 20)� max(p̃a) (= 1.35), where a = 0.1, the momentum diffusion coefficient
takes the form D̃ = D0p

2, D0 = 1/18η. The distribution eventually relaxes to
the steady state solution given by equation 4.33 after a time t ∼ 103t0, where t0
is defined by equation 4.27.
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Figure 4.7: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28. As
η (= 50)� max(p̃a) (= 2.46), where a = 0.3, the momentum diffusion coefficient
takes the form D̃ = D0p

2, D0 = 1/18η. The distribution eventually relaxes to
the steady state solution given by equation 4.33 after a time t ∼ 104t0, where t0
is defined by equation 4.27.
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where ∆V is the amplitude of the waves and λ is the wavelength. If we set
T = λ/V0 and 〈(∇ · δV)2〉 = (∆V )2/λ2, then, upon normalising, we obtain the
same diffusion coefficient as given by equation 4.35.

η � p̃a In this limit, the quantity in brackets in equation 4.29 is approximately
unity (as erfcx(η1/2p̃−a/2) ≈ 1 and η1/2p̃−a/2 � 1), and therefore the diffusion
coefficient is approximately given by D̃ = D0p̃

2−a, where D0 = 1/9. Figures 4.8
and 4.9 display the distribution function’s temporal evolution for both a = 0.5 &
η = 0.01, and a = 1 & η = 0.001 respectively, where this condition is satisfied.
In each case, the function approaches the asymptotic solution given analytically
by

f(p̃, t̃→∞) =


Q0

(3− a)D0p0

p̃ ≤ 1

Q0

(3− a)D0p0

p̃−(3−a) p̃ > 1
(4.37)

η ≈ p̃a We now consider a regime that was not explored in J10, namely where
η ≈ p̃a. Figure 4.10 shows steady state solutions of the momentum diffusion
equation for this more general coefficient. In all four cases, we have taken η =
p̃a ≈ 1a = 1, regardless of the value of a. As can be seen, in each case, the solution
takes approximately the form of a power law p̃−σ, where 3− a < σ < 3. This can
be understood by observing the log plots of this more general diffusion coefficient
in Figure 4.11. As we can see, within this momentum range, this coefficient is
well approximated by a power law, particularly at momenta close to the injection
momenta. Once again, the rate at which this asymptotic behaviour is obtained
depends strongly on both free parameters (which, in this case, is only a as η = 1
in all cases).

As we have seen, a p̃−3 spectra is commonly obtained for various choices of
the two free parameters. In fact, this is the hardest slope of the steady state
solution for a > 0, which can be achieved either by a momentum independent
spatial diffusion coefficient (a = 0), or if η � p̃a is satisfied. In any other regime,
the resulting asymptotic solution has a softer slope. In order to achieve a harder
power law, the spatial diffusion power law index must satisfy a < 0. In particular,
to achieve the required p̃−5 spectrum, a very unlikely index of a = −2 is required.

However, J10 do not claim that the above analysis is complete. For example,
they comment that the inclusion of adiabatic cooling would reduce the efficiency
of the acceleration process, thus hardening the spectrum. The transport equation
with cooling is given by

∂f

∂t
=
∇ ·V0

3
p
∂f

∂p
+

1

p2

∂

∂p

(
p2D

∂f

∂p

)
+Q0δ(p− p0) (4.38)
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Figure 4.8: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28. As
η (= 0.01) � min(p̃a) (= 0.22), where a = 0.5, the momentum diffusion coeffi-
cient takes the form D̃ = D0p

1.5, D0 = 1/9. The distribution eventually relaxes
to the steady state solution given by equation 4.37 after a time t ∼ 102t0, where
t0 is defined by equation 4.27.
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Figure 4.9: The evolution of the particle distribution function due to both mo-
mentum diffusion and mono-energetic injection, as governed by equation 4.28. As
η (= 0.001)� min(p̃a) (= 0.05), where a = 1, the momentum diffusion coefficient
takes the form D̃ = D0p, D0 = 1/9. The distribution eventually relaxes to the
steady state solution given by equation 4.37 after a time t ∼ 102t0, where t0 is
defined by equation 4.27.
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Figure 4.10: The asymptotic behaviour of the particle distribution function un-
der the influence of both momentum diffusion and mono-energetic injection, as
governed by equation 4.28 and with η = 1. For this choice of η, the resulting
spectrum always lies between p−3 and p−(3−a). The rate at which this steady state
solution is obtained depends on the value of a.
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which, for D = D0p
2, has steady state solutions given by

f(p, t→∞) =


Q0

(3 + α)D0p0

p ≤ p0

Q0

(3 + α)D0p0

p−(3+α) p > p0

(4.39)

where α = ∇ · V0/3D0. Thus, a p−5 spectrum can be obtained if the cooling
timescale τcool (= 3/(∇ · V0)) and the momentum diffusion timescale τmom (=
(D0)−1) satisfy the relation τcool = τmom/2, as is shown in Figure 4.12.

However, other effects have also not been considered. In particular, spatial
diffusion has been neglected, or at least (as in the pump mechanism discussed in
Section 4.2) treated in an ad-hoc manner. In Chapters 5 and 6, we will return
to solving the more general transport equation in the presence of large-scale
compressional turbulence, as described by equation 3.11 with coefficients given
in equations 3.9 and 3.10.
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Figure 4.12: The evolution of the particle distribution function due to momentum
diffusion, adiabatic cooling and mono-energetic injection, as governed by equation
4.38. The momentum diffusion coefficient is taken as D = D0p

2. The distribution
eventually relaxes to the steady state solution given by equation 4.39 after a time
t ∼ τmom, where τmom = 1/D0.
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Chapter 5

Analytical Solutions to the
Large-Scale Compressional
Transport Equation under
Pressure Balance

We return now to solving the relevant transport equation for particle acceleration
in the presence of large-scale compressible turbulence, i.e. equation 3.11

∂f

∂t
+ V · ∇f =

∇ ·V
3

p
∂f

∂p
+∇ · (κ+ κ′) · ∇f +

1

p2

∂

∂p

(
p2D′

∂f

∂p

)
− f

τL
(5.1)

where the primed coefficients, given by equations 3.9 and 3.10, are due to large-
scale compressible turbulence, and the unprimed coefficient is due to small scale
plasma waves. Antecki et al. [2013] have argued that, within the heliosphere,
spatial diffusion by small scale waves is negligible in comparison to that of large-
scale compressional turbulence, i.e. κ′ � κ. We therefore neglect κ, and assume
that both spatial and momentum diffusion is dominated by large-scale turbulence.
Dropping the primes for convenience, our relevant transport equation is now given
by

∂f

∂t
+ V0

∂f

∂r
=

2V0

3r
p
∂f

∂p
+

1

r2

∂

∂r

(
r2κ

∂f

∂r

)
+

1

p2

∂

∂p

(
p2D

∂f

∂p

)
− f

τL
+Q (5.2)

where we have assumed spherical symmetry and a constant solar wind speed
V0, while also including the possibility of the injection of particles. Our method
of solving this equation will be similar to that of Antecki et al. [2013], where
they solved equation 5.2 in the absence of losses. Zhang and Lee [2013] have
demonstrated that the diffusions coefficients of equations 3.9 and 3.10 attain

84



maximum values when κ = VcL and

D =
V 2
c p

2

15κ
(5.3)

where Vc is the compressional wave speed and L is the turbulent length scale.
This form of momentum diffusion coefficient is reasonable as it follows the same
D ∝ p2/κ dependence as found in the limit η � p̃a in Section 4.3. We will not
make the assumption that this maximum acceleration is sustained; however, we
will assume that the relationship between both diffusion coefficients, given by
equation 5.3, is valid. Hence, if we treat the loss time τL as a free parameter, the
only quantity yet to be identified is κ. To obtain a sensible form of this spatial
diffusion coefficient, and therefore also the momentum diffusion coefficient by
equation 5.3, we use the same “pressure balance” concept as was first introduced
in Zhang [2010] and then applied in Antecki et al. [2013].

5.1 Pressure Balance Condition

The particle pressure P (r, t) is related to the particle distribution function f(p, r, t)
by

P (r, t) =
4π

3m

∫
p4f(p, r, t)dp (5.4)

Therefore, multiplying equation 5.2 by 4πp4/3m and integrating over momentum,
we obtain the following pressure equation

∂P

∂t
+ V0

∂P

∂r
= −10V0

3r
P +

1

r2

∂

∂r

(
r2κ(r)

∂P

∂r

)
+

2V 2
c

3κ(r)
P + Ṗi −

P

τL
(5.5)

where Ṗi is the contribution to the pressure from the injected particles and we
have assumed that the spatial diffusion coefficient is momentum independent. Let
us consider the growth rate of the pressure by inserting a solution of the form P =
P0(r)eγt, where P0(r) is the observed suprathermal tail particle pressure under
steady-state conditions. If we assume that P0(r) only has a weak dependence on
r, i.e. that P ′(r) and P ′′(r) are small compared to P itself, then this results in
the following equation for γ

γ ≈ −10V0

3r
+

2V 2
c

3κ(r)
− 1

τL
(5.6)

(If instead the steady state pressure has a stronger spatial dependence, it could be
a large contributor to the deviations in the spectra that were discussed in section
1.4). As shall be discussed in section 5.2, it is possible for the distribution to reach
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steady state conditions. In order for this to occur, we must have that γ = 0. In
other words, the gain in pressure and indeed energy from momentum diffusion is
balanced by both adiabatic cooling and losses. Antecki et al. [2013] argued that
this equilibrium is maintained between momentum diffusion and adiabatic cooling
only. However, the universal p−5 spectrum is also observed past the termination
shock, where cooling is considered unimportant. Instead, we infer that pressure
balance in the heliosheath may be stabilised by momentum diffusion and losses.

As we shall see, this mathematical ansatz will allow us to determine both the
spatial and momentum dependence of both diffusion coefficients, as well as the
corresponding magnitudes of each. It should be emphasised, however, that this
balance condition is not a necessary requirement to create the results that will be
developed in this chapter. Rather, is should be regarded as a useful tool that leads
us to results that are both sensible and experimentally justified. Instead of apply-
ing the pressure balance condition, a different approach could have been taken,
where we instead begin by choosing suitable spatial and momentum dependen-
cies of the coefficients. Upon motivating that the sensible choices of dependencies
are those which reduce the transport equation to a Cauchy-Euler equation, we
could then fine tune the magnitudes such that p−5 spectra are created. However,
the most interesting aspect of this balance condition, as we shall see, is that it
naturally constrains the spectral slope to be −5 due to the interplay between the
various mechanisms. While it may be also possible that the magnitudes of the
coefficients are such that they coincidentally lead to spectral indices of −5, the
exactness of this index leads to the appeal of a more physical explanation.

Upon setting γ = 0 in equation 5.6, this pressure balance condition results in
the following form of the spatial diffusion coefficient

κ(r) =
2V 2

c r

10V0 + 3r/τL
(5.7)

This spatially dependent diffusion coefficient is a sensible result. Data from Voy-
ager 1 & 2, IMP 8 and Pioneer 10 infer a dependence of the form κ ∝ rα with
α = 1.1 − 1.4 Fujii and McDonald [2005]. Figures 5.1 and 5.2 are plots of the
normalised spatial diffusion coefficient κ∗ for various different loss times τL, where

κ∗ =
5V0

r0V 2
c

κ (5.8)

and we have defined τC ≡ r/V0 and τC0 ≡ r0/V0. Hence, with a momentum
diffusion coefficient given by equation 5.3 and a spatial diffusion coefficient given
by 5.7, our full transport equation now takes the form

∂f

∂t
+ V0

∂f

∂r
=

2V0

3r
p
∂f

∂p
+

V 2
c

5V0r2

∂

∂r

(
r3

1 + 3r/(10V0τL)

∂f

∂r

)

86



+
V0(1 + 3r/(10V τL))

3r

1

p2

∂

∂p

(
p4∂f

∂p

)
+Q− f

τL
(5.9)

5.2 Relevant Timescales in the Transport Equa-

tion

Before attempting to solve this equation, we wish to analyse the relevant timescales
for each term in equation 5.9. These are given by the following

convection
τC =

r

V0

(5.10)

adiabatic deceleration

τA =
3r

2V0

=
3

2
τC (5.11)

momentum diffusion

τM =
3r

V0(1 + 3r/(10V τL))
=

3

(1 + 3r/(10V0τL))
τC (5.12)

spatial diffusion

τS = 5

(
V0

Vc

)2
r

V0

(1 + 3r/(10V0τL)) =
3

β
(1 + 3r/(10V0τL))τC (5.13)

losses
τL (5.14)

where we have defined β ≡ 3V 2
c /5V

2
0 = 0.6/M2

A and MA is the magnetosonic
Mach number of the solar wind. As we are primarily interested in comparing the
timescales of each mechanism, and as it is only the loss term that we have not
written in terms of τC , we recast it as a multiple of τC , namely

τL =
3χ

10(1− χ)
τC (5.15)

which is equivalent to implying that τL ∝ r. Our odd choice in the scaling factor
has been selected for comparative reasons. With this choice, our diffusion coef-
ficients are given by κ = χκAnt and D = DAnt/χ, where κAnt and DAnt are the
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Figure 5.1: The normalized spatial diffusion coefficient, as defined in equation 5.8,
for various different loss times, where τC = r/V0. The coefficient for an infinite
loss time (no losses), denoted by the dark blue line, corresponds to the coefficient
used in Antecki et al. [2013].
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Figure 5.2: The normalized spatial diffusion coefficient, as defined in equation
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infinite loss time (no losses), denoted by the dark blue line, corresponds to the
coefficient used in Antecki et al. [2013].
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diffusion coefficients obtained in Antecki et al. [2013] (equation 2 and equation
20 therein) in the absence of losses. The quantity χ is a free parameter which
allows us to solve the transport equation for different loss times relative to the
other timescales. In other words, for a loss time that is proportional to r, our
analysis is different to that of Antecki et al. [2013] in two ways: a changing in
the magnitudes of the diffusion coefficients, and the inclusion of a loss term. The
timescales now read as:

convection
τC =

r

V0

(5.16)

adiabatic deceleration

τA =
3

2
τC (5.17)

momentum diffusion
τM = 3χτC (5.18)

spatial diffusion

τS =
3

χβ
τC (5.19)

losses

τL =
3χ

10(1− χ)
τC (5.20)

It should be emphasised at this point that all of the timescales above are momen-
tum independent. This is important in itself as it affirms that the shape of the mo-
mentum spectra will remain the same over the entire momentum range (a momen-
tum dependent injection term Q(p) however can lead a change in spectral shape,
typically an abrupt change at the injection momentum p0 if Q(p) ∝ δ(p − p0)).
This rules out the possibility of rollovers in the spectra at some some high enough
momentum, as each of the mechanisms has the same importance and affect on
the particles over the entire momentum range, i.e. none of the mechanisms will
become more dominant at large momenta. This lack of a rollover will be discussed
further in Chapter 7, where we consider the possibility of including momentum
dependent timescales.

We intend to solve the transport equation for the above timescales under
steady state conditions. At first glance it may appear that, for these particular
timescales, we are not guaranteed stationarity, i.e. that the particles will have
accelerated to their steady state conditions before being swept out of the system.

90



If we compare both τC and τM , we see that momentum diffusion is only faster than
convection for χ < 1/3, corresponding to very fast losses. However, stationarity
can still be developed even with χ > 1/3, as momentum diffusion and convection
are not the only mechanisms moving the particles in phase space. Instead, the
more complicated picture described by equation (5.9) is in motion, and thus
the conditions for stationarity can differ greatly from the more simple model of
only convection and momentum diffusion. Assuming stationarity is attained, the
steady state transport equation is now given by

V0
∂f

∂r
=

2V0

3r
p
∂f

∂p
+
V 2
c χ

5V0r2

∂

∂r

(
r3∂f

∂r

)
+
V0

3rχ

1

p2

∂

∂p

(
p4∂f

∂p

)
+Q(r, p)−10V0(1− χ)

3χr
f

(5.21)

5.3 The Scattering Time Method

Assuming that the injection term is separable, i.e. that Q(r, p) = q1(r)q2(p), we
can rewrite equation 5.21 as

Lrf(r, p) + Lpf(r, p) = −3rχq1(r)

V0

q2(p) (5.22)

where

Lr =
βχ2

r

d

dr
r3 d

dr
− 3rχ

d

dr
− 10(1− χ) (5.23)

is the spatial operator acting on f and

Lp = 2χp
d

dp
+

1

p2

d

dp

(
p4 d

dp

)
(5.24)

is the momentum operator. This equation can be solved using the “scattering
time method”, as introduced in Wang and Schlickeiser [1987], discussed in detail
in Schlickeiser [2002] and applied in Antecki et al. [2013]. According to this
theory, for suitable boundary conditions in space and momentum, this equation
can be solved with a solution

f(r, p) =

∫ ∞
0

du H(p, u)M(r, u) (5.25)

where H(p, u) satisfies
∂H

∂u
= LpH (5.26)

with

H(p, u =∞) = 0 H(p, u = 0) = q2(p) (5.27)
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and M(r, u) satisfying
∂M

∂u
= LrM (5.28)

with

M(r, u =∞) = 0 M(r, u = 0) =
3rχq1(r)

V0

(5.29)

Since Lr is of Sturm-Lioville form, M(r, u) can be expanded into an orthonormal
system Arfken [1970]

M(r, u) =
∑
i

ciMi(r)e
−λiu (5.30)

where λi are the eigenvalues of this spatial operator and ci are the expansion
coefficients. Thus, inserting equation 5.30 into equation 5.25, we now have that

f(r, p) =
∑
i

ciMi(r)Ri(p) (5.31)

where we have defined

Ri(p) ≡
∫ ∞

0

duH(p, u)e−λiu (5.32)

Therefore, in order to obtain the particle distribution f(p, r), we need to deter-
mine four quantities

• The momentum components Ri(p)

• The spatial components Mi(r)

• The eigenvalues λi

• The expansion coefficients ci

In Sections 5.4, 5.5 and 5.6, we calculate each of the quantities in turn, before
analysing the full solution of equation 5.31 in Section 5.7.

5.4 Calculating the Momentum Components

Multiplying both sides of equation 5.26 by M(r, u), as defined in equation 5.30,
and integrating over u, we obtain∑

i

ciMi(r)

∫ ∞
0

du e−λiu
∂H

∂u
=
∑
i

ciMi(r)

∫ ∞
0

du e−λiuLpH (5.33)
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Integrating the left hand side by parts and using the definition of Ri(p), this
equations simplifies to∑

i

ciMi(r)[−H(p, u = 0) + λiRi(p)] =
∑
i

ciMi(r)LpRi(p) (5.34)

Inserting the initial condition given in equation 5.27 and rearranging∑
i

ciMi(r)[LpRi(p)− λiRi(p) + q2(p)] = 0 (5.35)

Therefore, the Ris are determined by solving what are referred to as “leaky box
equations”

LpRi(p)− λiRi(p) = −q2(p) (5.36)

Inserting our Lp into equation 5.36, we obtain

2χp
dRi

dp
+

1

p2

d

dp
p4dRi

dp
− λiRi(p) = −q2(p) (5.37)

which can be recast into self-adjoint form as

d

dp

(
p4+2χdRi

dp

)
− λip2+2χRi(p) = −p2+2χq2(p) (5.38)

This equation can be solved using a Green’s function

Ri(p) =

∫ ∞
0

dp0p
2+2χ
0 q2(p0)Gi(p, p0) (5.39)

where G(p, p0) satisfies

d

dp

(
p4+2χdGi

dp

)
− λip2+2χGi = −δ(p− p0) (5.40)

We trial a power law solution to the above equations, namely that Gi(p, p0) =
Ai(p0)pai . Inserting this into the above, we obtain a2

i +5ai−λ = 0 as the equations
for the ai’s. These equations have solutions ai = −(χ+3/2)±µi where µi depends
on both λi and χ via

µi =

√(
χ+

3

2

)2

+ λi (5.41)

In the case with no losses, i.e. χ = 1, we obtain

µi =

√
25

4
+ λi (5.42)
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which agrees with equation 44 of Antecki et al. [2013]. Thus our Green’s function
solution is currently

Gi(p, p0) =

{
Ai(p0)p−(χ+3/2)+µi +Bi(p0)p−(χ+3/2)−µi p ≤ p0

Ci(p0)p−(χ+3/2)+µi +Di(p0)p−(χ+3/2)−µi p ≥ p0

(5.43)

If we use the following sensible momentum boundary conditions

f(r, p = 0) = finite f(r, p→∞) = 0 (5.44)

i.e. that there are a finite number of particles with no energy and no particles
with infinite energy, then this implies that Bi(p0) = Ci(p0) = 0. Thus we now
have that

Gi(p, p0) =

{
Ai(p0)p−(χ+3/2)+µi p ≤ p0

Di(p0)p−(χ+3/2)−µi p ≥ p0

(5.45)

We must also have continuity at p = po, implying that Ai(p0)p
−(χ+3/2)+µi
0 =

Di(p0)p
−(χ+3/2)−µi
0 , i.e. that Ai(p0) = Di(p0)p−2µi

0 . We also have a jump condition
at p = p0 due to the singular behaviour at the discontinuity. Upon integration,
this condition implies that

p4+2χ
0 [(−(χ+ 3/2)− µi)Di(p0)p−(χ+3/2)−µi−1

− (−(χ+ 3/2) + µi)Ai(p0)p−(χ+3/2)+µi−1] = −1 (5.46)

Inserting that Ai(p0) = Di(p0)p−2µi
0 and rearranging, we obtain for both Ai(p0)

and Di(p0) that

Ai(p0) =
1

2µi
p
−(χ+3/2)−µi
0 Di(p0) =

1

2µi
p
−(χ+3/2)+µi
0 (5.47)

Hence, the solution to equation 5.40 is given by

Gi(p, p0) =
(pp0)−(χ+3/2)

2µi

{
(p/p0)µi for p ≤ p0

(p/p0)−µi for p ≥ p0

(5.48)

Inserting this expression for Gi(p, p0) back into equation 5.39, we obtain

Ri(p) =
1

2µipχ+3/2

[
p−µi

∫ p

0

dp0p
χ+1/2+µi
0 q2(p0) + pµi

∫ ∞
p

dp0p
χ+1/2−µi
0 q2(p0)

]
(5.49)

If we assume that injection is mono-energetic, namely that q2(p0) = Q0δ(p− pI),
we obtain the following solution for Ri

Ri(p, pI) =
Q0

2µipI

{
(p/pI)

µi−(χ+3/2) for p ≤ pI

(p/pI)
−µi−(χ+3/2) for p ≥ pI

(5.50)
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Note that, while it may appear that we have calculated the Ris needed to deter-
mine the distribution function via equation 5.31, we are yet to determine the µis
that appear in equation 5.50. Recalling the definition of µi from equation 5.41,
in order to calculate these quantities, we need to calculate the eigenvalues λi. In
the next section, we determine these eigenvalues while simultaneously calculating
the spatial components Mi(r).

5.5 Calculating the Spatial Components and Eigen-

values

According to equation 5.30
∂Mi

∂u
= −λiMi (5.51)

and therefore, by equation 5.28

LrMi(r) + λiMi(r) = 0 (5.52)

Inserting our expression for Lr from equation 5.23 into the above, we obtain

βχ2r2d
2Mi

dr2
+ 3(βχ2 − χ)r

dMi

dr
+ [λi − 10(1− χ)]Mi(r) = 0 (5.53)

which, upon rearranging, becomes

r2d
2Mi

dr2
− 2ηr

dMi

dr
+ ΛiMi(r) = 0 (5.54)

where we have defined

η ≡ 3

2

(
1

βχ
− 1

)
Λi ≡

λ∗i
βχ2

(5.55)

and we have shifted the eigenvalues to λ∗i = λi − 10(1 − χ). Recasting equation
5.54 with Mi(r) = rηE(r), we obtain

r2d
2E

dr2
+

1

4
E +

[
Λi −

(
η +

1

2

)2
]
E = 0 (5.56)

This equation is solvable as E(r) ∝ rk where k satisfies(
k − 1

2

)2

=

(
η +

1

2

)2

− Λi (5.57)
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5.5.1 Case 1: Λi < (η + 1/2)2

We are interested most in the smallest λi’s (which in turn is when Λi < (η+1/2)2)
as these eigenvalues will dominate the spectrum at high momenta. Setting ψ2 =
(η + 1/2)2 − Λi > 0, the general solution to equation 5.56 is then

E(r) = r1/2(a1r
ψ + a2r

−ψ) (5.58)

To find a1 and a2, suitable spatial boundary conditions need to be chosen. We
adopt the same spatial range as is used in Antecki et al. [2013], namely a minimum
value of r0 and a corresponding maximum value of 10r0. Although they do not
state explicitly state their value of r0, we adopt a value of 1 AU. The spatial
dependence of the magnetic field, as stated in equaiton 2.18, has an approximate
B(r) ∝ 1/r2 dependence. Therefore, at the inner boundary, the magnetic field is
stronger. Hence, a reflecting boundary of the form (dM/dr)r0 = 0 is a sensible
choice. At the outer boundary, where the magnetic field is weaker, particles can
more easily escape the region, and therefore a free escape boundary (M(R) = 0)
is chosen. The second condition implies that

a2 = −a1R
2ψ (5.59)

from which we obtain

Mi(r) = rη+1/2(a1r
ψ − a1R

2ψr−ψ)

= a1R
ψrη+1/2

[(
R

r

)−ψ
−
(
R

r

)ψ]

= a1R
ψrη+1/2

{
exp

[
−ψ ln

(
R

r

)]
− exp

[
ψ ln

(
R

r

)]}
= a∗1r

η+1/2 sinh[ψ ln(R/r)]

(5.60)

where a∗1 = −2a1R
ψ. Thus

dMi

dr
= a∗1r

η−1/2{(η + 1/2) sinh[ψ ln(R/r)]− ψ cosh[ψ ln(R/r)]} (5.61)

and hence the first boundary condition implies that

tanh

[
ψ ln

(
R

r0

)]
=

2ψ

1 + 2η
(5.62)

This transcendental equation has one unique solutions ψ1 and thus only one small
λi is obtained that satisfies Λi < (η + 1/2)2. If

ln

(
R

r0

)
� 2

1 + 2η
(5.63)
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an approximate solution to this equation is:

ψ ≈ (η + 1/2)

[
1− 2

(
R

r0

)−(1+2η)
]

(5.64)

Since Λ1 = (η + 1/2)2 − ψ2, we obtain by expanding ψ

Λ1 = (η + 1/2)2 − (η + 1/2)2

[
1− 4

(
R

r0

)−(1+2η)

+ . . .

]
(5.65)

≈ (1 + 2η)2

(
R

r0

)−(1+2η)

(5.66)

and finally since λ∗1 = βχ2Λ1 and η = 5M2
A/(2χ)− 3/2, we obtain for λ∗1

λ∗1 =
3χ2

5M2
A

(
5

χ
M2

A − 2

)2 (r0

R

)5M2
A/χ−2

(5.67)

Thus, the first eigenvalue can then be calculated via λ1 = λ∗1 + 10(1− χ).

5.5.2 Case 2: Λi ≥ (η + 1/2)2

The remaining λ∗i s are calculated for Λi ≥ (η + 1/2)2. Setting ν2 = Λi − (η +
1/2)2 > 0, the solution to equation 5.56 is now given by

E(r) = r1/2(b1r
iψ + b2r

−iψ) (5.68)

Following the same procedure as in the previous section, the remaining Mis are
calculated as

Mi(r) = b∗1r
η+1/2 sin[νi ln(R/r)] (5.69)

where b∗1 = −2ib1R
iψ. Once again, the first boundary conditions results in a

transcendental equation, this time of the form

tan

[
ν ln

(
R

r0

)]
=

2ν

1 + 2η
(5.70)

However, this equation now has an infinite amount of solutions which, if condition
5.63 is satisfied, are approximately given by

νi ≈ (i− 1)π

[
1 +

1

(η + 1/2) ln(R/r0)

]
i = 2, 3 . . . (5.71)
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Therefore, as Λi = ν2 + (η + 1/2)2, we obtain for the Λi’s

Λi = (i− 1)2π2

[
1 +

1

(η + 1/2) ln(R/r0)

]2

+

(
η +

1

2

)2

i = 2, 3 . . . (5.72)

and thus for the remaining λ∗i s

λ∗i =
3χ2

5M2
A

{
(i− 1)2π2

[
1 +

1

(5M2
A/2χ− 1) ln(R/r0)

]2

+

(
5M2

A

2χ
− 1

)2
}

i = 2, 3 . . . (5.73)

and once again, the remaining eigenvalues are determined by the relation λi =
λ∗i + 10(1− χ).

5.6 Calculating the Expansion Coefficients

Finally, according to equation 5.31, we need to calculate the expansion coefficients
ci in order to obtain the distribution function (Note that we have absorbed the
constants a∗1 and b∗1 from equations 5.60 and 5.69 respectively into these coeffi-
cients.). As the Mis form an orthonormal system, they satisfy the orthonormality
condition ∫ R

r0

r−2(η+1)Mm(r)Mn(r) dr = jnδm,n (5.74)

where

ji =

∫ R

r0

r−2(η+1)M2
i (r) (5.75)

This relation, coupled with the initial condition, can be used to obtain the ex-
pansion coefficients as follows∫ R

r0

dr r−2(η+1)M(r, u = 0)Mi(r) =
∑
i

ci

∫ R

r0

r−2(η+1)Mj(r)Mi(r) = ciji (5.76)

where we have used equation 5.74. Hence, rearranging

ci =
1

ji

∫ R

r0

dr r−2(η+1)M(r, u = 0)Mi(r)

=
3χ

V0ji

∫ R

r0

r−2η−1q1(r)Mi(r)

(5.77)

where we have inserted the initial condition given by equation 5.29. As we are
primarily interested in comparing our results to those of Antecki et al. [2013],
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we also adopt their spatial injection term, where they assume pick-up ions are
injected in an outer ring distribution of the form

q1(r) = H[r − r1]H[r2 − r] (5.78)

where r1 = 0.5R and r2 = 0.9R and H[n] is the Heaviside step function. Thus,
upon inserting this injection term and the Mis from equations 5.60 and 5.69 into
equation 5.77 and integrating, we obtain for the expansion coefficients

c1 =
3χ

V j1R
η− 1

2

[
ψ2

1 −
(
η − 1

2

)2
]−1 {

2η−
1
2 [ψ1 cosh(ψ1 ln 2)

−
(
η − 1

2

)
sinh(ψ1 ln 2)

]
− 10

9

η− 1
2
[
ψ1 cosh

(
ψ1 ln

10

9

)
−
(
η − 1

2

)
sinh

(
ψ1 ln

10

9

)]}
(5.79)

where

j1 =
sinh[2ψ1 ln(R/r0)]

4ψ1

− 1

2
ln(R/r0) (5.80)

and for i = 2, 3 . . .

ci =
3χ

V jiR
η− 1

2

[
ν2
i +

(
η − 1

2

)2
]−1{

2η−
1
2

[(
η − 1

2

)
sin(νi ln 2)− νi cos(νi ln 2)

]

−10

9

η− 1
2
[(
η − 1

2

)
sin

(
νi ln

10

9

)
− νi cos

(
νi ln

10

9

)]}
(5.81)

where

ji =
1

2
ln(R/r0)− sin[2νi ln(R/r0)]

4ν1i
(5.82)

5.7 Results and Discussion

Hence, by equation 5.31, with ci given by equations 5.79 and 5.81, Mi(r) given by
equations 5.60 and 5.69 and Ri(p) given by equation 5.50, we obtain the following
spectrum

f(p, r) =
Q0

2pI

∑
i

ciMi

µi

{
(p/pI)

µi−(χ+3/2) for p ≤ pI

(p/pI)
−µi−(χ+3/2) for p ≥ pI

(5.83)
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5.7.1 Analysing λ∗1

At high momenta, where the contribution from λ1 may dominate over the other
eigenvalues if the first expansion coefficient c1 is large enough, we must have that

µ1 =

√(
χ+

3

2

)2

+ λ∗1 + 10(1− χ) + χ+
3

2
= 5 (5.84)

if we wish to obtain a p−5 spectrum. Upon rearranging, this implies that the
value for λ∗1 must be

λ∗1 = 0 (5.85)

Hence, according to equation 5.67, for a particular choice of χ, i.e. for a particular
loss rate, the following condition

3χ2

5M2
A

(
5

χ
M2

A − 2

)2 (r0

R

)5M2
A/χ−2

� 1 (5.86)

must be satisfied to obtain a spectral index of −5. Antecki et al. [2013] have
demonstrated that, for χ = 1, this conditions is indeed true. To see if this condi-
tion is still true for χ 6= 1, i.e. whether it is still true with the inclusion of losses,
we look at three different loss timescales: a long, similar and short timescale in
comparison to the convection timescale τC . In particular, we calculate equation
5.86 when the loss timescale τL is equal to 10τC , τC and 0.1τC , corresponding to
values of χ equaling 0.97, 0.77 and 0.25 respectively. For each of these loss times,
by equation 5.67, we obtain

Long Timescale [τL = 10τC (χ = 0.97)]: λ∗1 = 6.96× 10−7 � 1
Similar Timescale [τL = τC (χ = 0.77)]: λ∗1 = 2.69× 10−9 � 1
Short Timescale [τL = 0.1τC (χ = 0.25)]: λ∗1 = 8.66× 10−34 � 1

where we have adopted the same value of MA (= 1.35) that was used in An-
tecki et al. [2013]. This value of MA corresponds to very strong turbulence. If
we instead choose a larger Mach number, i.e. weaker turbulence, condition 5.86
becomes even more satisfied. However, the first expansion coefficient c1 becomes
smaller, meaning that the momentum at which the spectral index relaxes to −5
occurs at a momentum that is much larger than observed. In other words, this
choice of Mach number is a best-fit value to match on to the observed spectra. For
this choice of Mach number, no matter what the loss timescale is, if we assume
λ1 dominates over the other λi’s, a p−5 spectrum is always achieved.
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5.7.2 Analyzing λ∗i s, i = 2, 3 . . .

To see what affect the addition of the other λ∗i s has on deviating the spectral
index from −5, we for clarity list the first 10 λ∗i s, µis and ais for different loss
times in Table 5.1, where we have recast the expansion coefficients via

ai =
V0R

η− 1
2

3
ci (5.87)

In Figures 5.3 and 5.4, we have calculated the deviation of the spectrum from
p−5 by the inclusion of the first 100 λi’s etc. both inside and outside the source
distribution for different loss rates. Note that we have normalized each spectrum
to have the same value at the injection momentum in order to easily compare all
spectra to the plotted p−5 spectrum, i.e. we have normalised each spectrum as

F (p) =
2p3−2χ

I V0

3Q0

f(τL →∞, p = pI)

f(τL, p = pI)
f(p) (5.88)

Inside the injection zone (Figure 5.3): Below the injection momentum,
rather than the flat spectra that were obtained in Section 4.3, we instead find
power laws. This is due to the addition of more affects in this analysis, including
that of spatial diffusion and losses. Above the injection momentum, all spectral
indices are harder than −5 at low momenta. However, with increasing loss rate,
the spectra are softer, resulting in spectra closer to p−5. At larger momenta, the
contribution from i > 1 eigenvalues become less important and the spectra soften
back towards a −5 index, as is evident with the blue and red spectra. However,
for even larger loss times, this softening is not observed. This can be be explained
by comparing the timescales for both momentum diffusion and losses given by
equations 5.18 and 5.20 respectively, namely

τM = 3χτC τL =
3χ

10(1− χ)
τC (5.89)

The loss mechanism becomes faster than momentum diffusion (τL < τM) for val-
ues of χ that satisfy χ > 0.9. Hence, according to equation 5.20, this corresponds
to loss times τL < 3.9τC . In this limit, which both the green and pink spectra
satisfy, losses dominate over momentum diffusion and softening at high momenta
does not occur.

Outside the injection zone (Figure 5.4): Below the injection momentum,
we find a more complicated spectra than was evident inside the injection zone.

101



τL →∞ τL = 10τC
i λ∗

i µi ai λ∗
i µi ai

1 1.29× 10−6 2.50 1.16× 10−5 6.96× 10−7 2.50 7.31× 10−6

2 8.25 3.81 1.27 8.06 3.77 1.33
3 20.53 5.17 −0.28 19.53 5.06 −0.30
4 40.99 6.87 −0.11 38.66 6.68 −0.13
5 69.62 8.71 0.30 65.44 8.45 0.33
6 106.45 10.62 −0.31 99.87 10.28 −0.32
7 151.45 12.56 0.11 141.95 12.15 0.11
8 204.64 14.52 −0.03 191.68 14.04 −0.01
9 266.01 16.50 −0.17 249.06 15.95 −0.18
10 335.56 18.49 0.13 314.09 17.87 0.14

τL = τC τL = 0.1τC
i λ∗

i µi ai λ∗
i µi ai

1 2.69× 10−9 2.50 1.11× 10−7 8.66× 10−34 2.50 0.02
2 7.00 3.57 2.00 6.32 3.36 947.47
3 13.83 4.38 −0.63 6.96 3.44 −747.71
4 25.21 5.49 −0.33 8.03 3.56 −109.16
5 41.15 6.74 0.66 9.52 3.73 742.30
6 61.64 8.08 −0.53 11.44 3.94 −586.93
7 86.69 9.47 0.10 13.79 4.18 −29.19
8 116.29 10.89 0.17 16.56 4.46 511.79
9 150.44 12.33 −0.39 19.77 4.76 −494.34
10 189.14 13.79 0.25 23.39 5.08 91.44

Table 5.1: Spatial eigenvalues λi, spectral indices µi and normalised expansion
coefficients ai, as defined in equation 5.87, for different loss times, where we have
assumed MA = 1.35 and R = 10r0

.
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Figure 5.3: The steady state momentum spectra at r = 0.7R for four different
loss times, as determined by equation 5.83. Each spectra has been normalised
according to equation 5.88. The first 100 eigenvalues and expansion coefficients
have been included. Also plotted is a F ∝ p−5 spectrum for comparison.
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However, with an increasing loss rate (i.e. as losses begin to dominate), a return
to a power law shape is found. Above the injection momentum, we once again
find spectra that are softer than −5 at low momenta. With increasing loss rate,
it would appear that the spectral indices soften towards −5, as is evident by the
green spectrum. However, at an even greater loss rate, as with the pink spectrum,
the index hardens again. As τL < τC , losses dominate over momentum diffusion
and therefore we would expect a steeper spectrum as there are less particles to
accelerate. The softening of the spectra towards −5 also appears to occur at a
lower momentum than spectra found inside the injection zone.

In Figures 5.5 and 5.6, we have plotted the radial profiles at momenta both
above and below the injection momentum, where we have once again included the
first 100 λi’s. Note that we have not plotted the profile for case when τL = 0.1τC
as the amplitude is much larger than the other profiles and plotting it would
suppress their features. For these spatial plots, we have normalized the spectra
as

F (r) =
2p3−2χ

I V0

3Q0

f(r) (5.90)

Above the injection momentum (Figure 5.5): In all three cases, as we
would expect, most particles are found at large radii, both due to the place-
ment of the injection zone and due to the reflecting boundary at the minimum
radius. With an increasing loss rate, the intensity of particles increases. This
is a counter-intuitive results, as we would expect there to be less particles with
energies above the injection momenta if there are more losses. However, the loss
time also changes the magnitude of the momentum diffusion coefficient due to
our pressure balance condition, and thus can enhance particle acceleration. In
other words, if there are particles (and therefore energy) lost from the system,
this can be balanced by the remaining particles being further accelerated. Also,
with increasing losses, the maximum intensity appears to be increasing to higher
radii.

At small radii, the distribution appears to be negative, which is of course
not possible. This abnormality is due to the well known Gibbs phenomenon, as
discovered by Henry Wilbraham in 1848 and analyzed by J. Willard Gibbs in
1899 Hewitt and Hewitt [1979]. According to the theory, the eigenfunction series
of a sharp discontinuity can both undershoot or overshoot, creating this artifact.
Our choice of spatial injection term of equation 5.78 falls under this category,
resulting in the observed undershooting at small radii. Note that this also causes
an overshoot at larger radii, which will become important when comparing this
profile to those obtained numerically in Chapter 6, where the Gibbs phenomenon
does not occur.
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Figure 5.4: The steady state momentum spectra at r = 0.15R for four different
loss times, as determined by equation 5.83. Each spectra has been normalised
according to equation 5.88. The first 100 eigenvalues and expansion coefficients
have been included. Also plotted is a F ∝ p−5 spectrum for comparison.

105



1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12
x 10

−8

r/r
0

F
(r

)

 

 

Antecki (τ
L
 → ∞)

τ
L
 = 10 τ

C

τ
L
 = τ

C

Figure 5.5: The steady state radial profiles at p = 10pI for three different loss
times, as determined by equation 5.83. Each spectra has been normalised accord-
ing to equation 5.90. The first 100 eigenvalues and expansion coefficients have
been included. The Gibbs phenomenon is observed at r/r0 ≈ 2− 4.
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Below the injection momentum (Figures 5.6): In these cases, the opposite
affect appears to be occurring. As we increase losses, i.e. remove energy from the
system, pressure balance can be sustained if particles are accelerated to energies
above the injection momentum. This, in turn, will lead to less particles and
therefore lower particle intensities below the injection momentum. However, as
was the case above pI , the maximum intensity shifts to larger spatial distances
with increasing losses.

We have shown that stochastic acceleration by large-scale compressible accel-
eration can lead to the creation of the observed p−5 spectrum. Also, depending
on the loss rate, significant deviations from a −5 index can also occur. However,
to achieve these results analytically, numerous assumptions were required. In the
next chapter, we take a numerical approach, allowing us to remove some of these
assumptions and in turn calculate more general solutions.
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Figure 5.6: The steady state radial profiles at p = 0.1pI for three different loss
times, as determined by equation 5.83. Each spectra has been normalised accord-
ing to equation 5.90. The first 100 eigenvalues and expansion coefficients have
been included. The Gibbs phenomenon is observed at r/r0 ≈ 2− 3.

108



Chapter 6

Numerical Solutions to the
Large-Scale Compressional
Transport Equation under
Pressure Balance

The analytical work of Chapter 5 has allowed us to demonstrate that a p−5

spectrum, as well as deviations from it, are indeed possible under this pressure
balance condition. However, in order to analytically solve the transport equation,
as given in equation 5.1, a number of key assumptions were made

• The spatial component of the injection term, as stated in equation 5.78,
takes the form q1(r) = H[r − r1]H[r − r2]

• A constant solar wind speed (V = V0r̂) throughout the acceleration region

• A spatially dependent loss time of the form τL(r) ∝ r

In this chapter, we relax these assumptions to see what affect, if any, it has on
the steady state spectra. Other assumptions, e.g. spherical symmetry, mono-
energetic injection, negligible spatial diffusion by small-scale waves and of course
the validity of the quasi-linear approach, we still assume to be valid.

In Section 6.1 we demonstrate that, if we wish to change the second or third
assumption above, a numerical rather than an analytical treatment is required.
We then numerically represent a more general transport equation in Section 6.2.
The analysis of Chapter 5 is then repeated numerically in Section 6.3 in order
to check whether both numerical and analytical solutions agree with each other.
This transport equation is then solved for a more accurate spatial injection term in
Section 6.4. Finally, in Section 6.5, we solve the more general transport equation
both in the inner heliosphere and beyond the termination shock.
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6.1 A More General Transport Equation

Motivated by our analysis in Chapter 2, in particular Figures 2.3 and 2.6, a
constant solar wind velocity is a good approximation at large distances. However,
at distances closer to the Sun, a |V| ∝ r dependence would appear to be more
suitable. Also, past the termination shock, we adopt the same velocity spatial
dependence as used in Zhang and Schlickeiser [2012] and elsewhere, namely |V| ∝
1/r2. Therefore, in total, we look for solutions under three different velocity
profiles

V = V0r̂ V = V0

(
r

ar0

)
r̂ V =

V0

R

(
br0

r

)2

r̂ (6.1)

where r0 = 1 AU, R is the termination shock compression ratio and a and b
depend on the location at which their respective profiles are found. Hence the
divergence of V, which is required in the adiabatic cooling term, is given by

∇ ·V =
(2 + α)εV0

r

{
r

[1 + α(a− 1)]r0

}α
α ∈ {0, 1}, ε ∈ {0, 1} (6.2)

where α = 0, ε = 1 corresponds to a constant solar wind, α = ε = 1 refers to
V ∝ r, and ε = 0, i.e. no adiabatic deceleration, corresponds to V ∝ 1/r2.
Applying the same pressure balance condition, we obtain a more general spatial
diffusion coefficient of the form

κ =
2V 2

c r

5ε(2 + α)V0{r/[1 + α(a− 1)]r0)}α + 3r/τL
(6.3)

With α = 0, ε = 1 and a = 1, i.e. a constant solar wind velocity at 1 AU, this
coefficient reduces to that of equation 5.7.

Similarly, assuming losses are due to charge exchange, a loss time of the
form τL ∝ r is well approximated for small heliospheric distances (see Zhang
and Schlickeiser [2012], Figure 9 therein). At even smaller distances, losses by
charge exchange are considered negligible. At large distances, including past the
termination shock, Figure 9 infers that a constant loss time would be a more
accurate approximation. Therefore, we adopt three expressions of the loss time,
namely

τL →∞ τL ∝ r τL = constant (6.4)

Again, we combine these three types into one form, given by

τL =
3χ

10(1− εχ)

{
r

[1 + σ(c− 1)]r0

}σ
r0

V0

σ ∈ {0, 1}, χ ≤ 1 (6.5)
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where c depends on the location at which τL ∝ r is sensible, χ = 1 refers to no
losses, σ = 0 represents a constant loss time, σ = 1 a loss time proportional to r
and where we have once again chosen the proportionality constant so as to easily
compare to the work of Antecki et al. [2013]. Upon inserting τL given by equation
6.5 into equation 6.3 and rearranging, we obtain

κ =
V 2
c rχ

5V0

h(r) (6.6)

where

h(r) =

{
(1 + α/2)εχ

{
r

[1 + α(a− 1)]r0

}α
+

1− εχ
[1 + σ(c− 1)]−σ

(
r

r0

)−σ+1
}−1

(6.7)
The analytic work of Chapter 5 was done with a spatial diffusion coefficient of the
form κ = κAntχ, i.e. with h(r) = 1, where κAnt is the coefficient used in Antecki
et al. [2013]. In this more general case, the diffusion coefficient is now represented
by κ = κAntχh(r), resulting in also a change in the momentum diffusion coefficient
by the relation given in equation 5.3. Also, the advection, adiabatic cooling and
loss terms may also be different due to the various possible spatial dependent
forms of the solar wind velocity and the loss timescale.

Table 6.1 show the form of h(r) for the range of values of α, ε and σ. For
a constant solar wind (α = 0, ε = 1) and a loss time proportional to r (σ = 1)
that switches on at r0 (c = 1) we obtain h(r) = 1 and the results of Chapter 5
follow. Note that h(r) = 1 is also the case when both V ∝ 1/r2 (ε = 0) and a
τL ∝ r (σ = 1) dependence begins at r0 (c = 1). However, this does not signify
that the results are the same as those found in Chapter 5 as, while the spatial
and momentum diffusion terms are the same, both the advection and adiabatic
cooling expressions have changed.

σ = 1 σ = 0

ε = 1, α = 0
1

χ+ (1− χ)c

1

χ+ (1− χ)(r/r0)

ε = 1, α = 1
1

(3χ/2)(r/ar0) + (1− χ)c

1

[(3/2a− 1)χ+ 1](r/r0)

ε = 0 c
r0

r

Table 6.1: Various values of the h(r) parameter that appears in the spatial diffu-
sion coefficient of equation 6.6.

The corresponding forms of both the spatial operator, as previously given by
equation 5.23, and the momentum operator, as previously given by equation 5.24,
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are

Lr =
βχ2h(r)

r

d

dr

(
r3h(r)

d

dr

)
− 3rχh(r)

R + (1−R)ε

{
r

[1 + εα(a− 1) + (1− b)(ε− 1)]r0

}αε+2(ε−1)
d

dr

− 10h(r)(1− εχ)[1 + σ(c− 1)]σ
(
r

r0

)−σ+1

(6.8)

Lp = (2 + α)εχh(r)

{
r

[1 + α(a− 1)]r0

}α
p
d

dp
+

1

p2

d

dp

(
p4 d

dp

)
(6.9)

However, note that the momentum operator is now, in general, no longer spatially
independent. Therefore, the scattering time method of Chapter 5 can no longer be
applied. Instead, we numerically solve the transport equation, given by equation
5.1, with spatial and momentum diffusion coefficients given by equations 6.6 and
5.3 respectively, for sensible choices of h(r).

6.2 The Numerical Representation of our Trans-

port Equation

In order to relax our assumptions of Chapter 5, we rewrite our transport equation,
given by equation 5.1, as a finite difference equation. As in Section 4.3, we begin
by recasting equation 5.1 into dimensionless quantities, as follows

r̃ =
r

r0

p̃ =
p

pI
ỹ = ln p̃ (6.10)

where the normalising values have their previous meanings. Thus, the steady
state form of equation 5.1 with the more general parameters of Section 6.1 is now
given by

V0

r0

1

R + (1−R)ε

[
r̃

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)
∂f

∂r̃
=

V0

r0

(2 + α)ε

3
[1 + α(a− 1)]−αr̃α−1∂f

∂ỹ
+

V 2
c χ

5V0r0

1

r̃2

∂

∂r̃

(
r̃3h(r̃)

∂f

∂r̃

)
+
V0

r0

1

3r̃χh(r̃)
e−3ỹ ∂

∂ỹ

(
e3ỹ ∂f

∂ỹ

)
− V0

r0

10(1− εχ)

3χ

[
r̃

1 + σ(c− 1)

]−σ
f +Q (6.11)

where we have used equations 5.3, 6.2, 6.5 and 6.6. Multiplying across by τC0

(= r0/V0), we obtain
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1

R + (1−R)ε

[
r̃

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)
∂f

∂r̃
=

(2 + α)ε

3
[1 + α(a− 1)]−αr̃α−1∂f

∂ỹ
+

χ

5M2
A

1

r̃2

∂

∂r̃

(
r̃3h(r̃)

∂f

∂r̃

)
+

1

3r̃χh(r̃)
e−3ỹ ∂

∂ỹ

(
e3ỹ ∂f

∂ỹ

)
− 10(1− εχ)

3χ

[
r̃

1 + σ(c− 1)

]−σ
f + τC0Q (6.12)

We now approximate these derivatives by using a finite difference grid. In order to
ensure that the solutions are accurate, we adopt the second order finite difference
approximations that were briefly discussed in Section 3.2.2, as follows

∂f

∂r̃
=
−fi+2j + 8fi+1j − 8fi−1j + fi−2j

12∆r̃
(6.13)

∂f

∂ỹ
=
−fij+2 + 8fij+1 − 8fij−1 + fij−2

12∆ỹ
(6.14)

∂

∂r̃

(
hir̃

3∂f

∂r̃

)
=

1

12(∆r̃)2

[
(fi+1j − fi+2j)r̃

3
i+3/2hi+3/2

+15(fi+1j − fij)r̃3
i+1/2hi+1/2 − 15(fij − fi−1j)r̃

3
i−1/2hi−1/2

+(fi−1j − fi−2j)r̃
3
i−3/2hi−1/2

]
(6.15)

∂

∂ỹ

(
e3ỹ ∂f

∂ỹ

)
=

1

12(∆ỹ)2

[
(fij+1 − fij+2)e3ỹj+3/2 + 15(fij+1 − fij)e3ỹj+1/2

−15(fij − fij−1)e3ỹj−1/2 + (fij−1 − fij−2)e3ỹj−3/2
]

(6.16)

where the ith and jth indices refer to space and momentum respectively. Inserting
each of these approximations into equation 6.12 and rearranging, we obtain an
equation of the form

fij =
Γi
αij

fi−2j +
βi
αij

fi−1j +
δi
αij

fi+1j +
Θi

αij
fi+2j +

ψi
αij

fij−2 +
γij
αij

fij−1

+
Σij

αij
fij+1 +

Ψi

αij
fij+2 + τC0

Q

αij
(6.17)

where these spatial and momentum dependent quantities are defined as

αij =
15

12

χ

5M2
Ar̃

2
i (∆r̃)

2
(r̃3
i+1/2hi+1/2 + r̃3

i−1/2hi−1/2)

+
15

12

e−3ỹj

3χhir̃i(∆ỹ)2
(e3ỹj+1/2 + e3ỹj−1/2) +

10(1− εχ)

3χ

[
r̃i

1 + σ(c− 1)

]−σ
(6.18)
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Γi = − 1

12∆r̃[R + (1−R)ε]

[
r̃i

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)

− 1

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i−3/2hi−3/2

(6.19)

βi =
8

12∆r̃[R + (1−R)ε]

[
r̃i

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)

+
15

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i−1/2hi−1/2 +

1

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i−3/2hi−3/2

(6.20)

δi = − 8

12∆r̃[R + (1−R)ε]

[
r̃i

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)

+
15

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i+1/2hi+1/2 +

1

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i+3/2hi+3/2

(6.21)

Θi =
1

12∆r̃[R + (1−R)ε]

[
r̃i

1 + εα(a− 1) + (1− b)(ε− 1)

]αε+2(ε−1)

− 1

12

χ

5M2
Ar̃

2
i (∆r̃)

2
r̃3
i+3/2hi+3/2

(6.22)

ψi =
1

12

(2 + α)ε[1 + α(a− 1)]−αr̃α−1
i

3∆ỹ
− 1

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj−3/2 (6.23)

γij = − 8

12

(2 + α)ε[1 + α(a− 1)]−αr̃α−1
i

3∆ỹ
+

15

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj−1/2

+
1

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj−3/2

(6.24)

Σij =
8

12

(2 + α)ε[1 + α(a− 1)]−αr̃α−1
i

3∆ỹ
+

15

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj+1/2

+
1

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj+3/2

(6.25)

Ψi = − 1

12

(2 + α)ε[1 + α(a− 1)]−αr̃α−1
i

3∆ỹ
− 1

12

e−3ỹj

3χhir̃i(∆ỹ)2
e3ỹj+3/2 (6.26)

This finite difference scheme is solved using the Gauss Seidel method, a scheme
that is commonly used to numerically solve steady-state differential equations.
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We begin with an initial guess of the distribution, namely f 0
ij. Then, we use

the following equation to calculate better estimates at each kth attempt semi-
implicitly

fk+1
ij =

Γi
αij

fk+1
i−2j +

βi
αij

fk+1
i−1j +

δi
αij

fki+1j +
Θi

αij
fki+2j +

ψi
αij

fk+1
ij−2 +

γij
αij

fk+1
ij−1

+
Σij

αij
fkij+1 +

Ψi

αij
fkij+2 + τC0

Q

αij
(6.27)

We continue to evolve the distribution to more accurate solutions until a pre-
defined stopping criteria is obtained. In the next section, we use this scheme
to determine both momentum spectra and radial profiles under the same condi-
tions as those of Chapter 5. Naturally, we therefore adopt the same boundary
conditions, namely

f(r, p = 0) = finite f(r, p→∞) = 0 (6.28)

(
df

dr

)
r0

= 0 f(R) = 0 (6.29)

6.3 Comparison of Analytical and Numerical So-

lutions

Before relaxing the assumptions made at the beginning of the chapter, we first
wish to compare the analytical results obtained in Chapter 5 to the solutions of
equation 6.27 for the same choice of parameters. Therefore, in what follows, we
continue with the assumed constant solar wind velocity and spatially dependent
loss time.

Inside the injection zone (Figure 6.1): As is evident, these spectra compare
very well to their analytical counterparts in Figure 5.3. Power laws of approxi-
mately the same index are obtained below the injection momentum, steeping with
increasing losses. Above the injection momenta, we once again obtain power laws,
all of which are steeper than the displayed p−5 spectrum. Also, in both the case of
no losses (τL →∞) and of a long loss time (τL = 10τC), we exhibit the softening
of the spectra at high momenta that, as we determined in the analysis of Chapter
5, is expected to occur.
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Figure 6.1: The steady state momentum spectra at r = 0.7R for four different
loss times, as determined numerically by equation 6.27. Each spectra has been
normalised to the case of τL →∞ in order to better compare the spectral indices.
Also plotted is a F ∝ p−5 spectrum for comparison.
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Outside the injection zone (Figure 6.2): Contrary to the spectra inside the
injection zone, the obtained spectra at r = 0.15R do not share similar features
to the corresponding analytical spectra of Figure 5.4. Each spectrum presents a
smoothening of the transition at pI , which was not observed analytically. We be-
lieve this is a numerical artifact produced by the use of a Heaviside step function,
which contains sharp discontinuities which commonly lead to numerical issues.

Figure 6.3 displays the spectra with the same parameters as in Figure 6.1, but
where we have approximated the Heaviside function by

q1(r) =
1

2
{tanh [k (r − r1)]− tanh [k (r − r2)]} (6.30)

where r1 = 0.5R and r2 = 0.9R and k = 2 is a parameter that determines the
sharpness of the boundaries. A comparison of the original spatial injection term of
equation 5.78 and this approximation for k = 2 is shown in Figure 6.4. With this
approximation, the smoothening has diminished, having been eliminated entirely
in the τL = 0.1τC case. We believe that a careful choice of a smoothening factor k
coupled with a large number of spatial grid points in the region of the boundaries
of the injection zone can suppress this artifact to an acceptable level.

For the remainder of this chapter, we shall be replacing this approximate
spatial injection term with a more accurate representation. Therefore, we will not
focus on improving on these spectra and instead accept that the use of Heaviside
step function will naturally lead to numerical errors.

Above the injection momentum (Figure 6.5): These profiles observe sim-
ilar behaviour to those obtained analytically in Figure 5.5. We again find that
the majority of particles are found closer to the right hand boundary, primarily
due to the reflecting boundary on the left. Also, as was found analytically, the
maximum amplitude of the profile grows with increasing loss times, with this
amplitude shifting to the right spatially.

However, the amount by which these amplitudes change appears to be smaller
compared to Figure 5.5. This could once again be due to a numerical error caused
by the use of a Heaviside step function. However, we believe that the radial
profiles we have obtained numerically are in fact correct. Instead, we are of the
opinion that the larger changes in amplitudes obtained numerically in Figure
5.5 are caused by the Gibbs phenomenon, which causes a larger overshoot, and
therefore a larger error, for larger functions.

Below the injection momentum (Figure 6.6): Once again, the profiles
found at small momenta observe similar features to those obtained analytically -
see Figure 5.6. Similar shapes of the profiles are found, with their positions rela-
tive to the boundaries agreeing very well. Once more, we find that the amplitude
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Figure 6.2: The steady state momentum spectra at r = 0.15R for four different
loss times, as determined numerically by equation 6.27. Each spectra has been
normalised to the case of τL →∞ in order to better compare the spectral indices.
Also plotted is a F ∝ p−5 spectrum for comparison.
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Figure 6.3: The steady state momentum spectra at r = 0.15R for four different
loss times, as determined numerically by equation 6.27. Each spectra has been
normalised to the case of τL →∞ in order to better compare the spectral indices.
Also plotted is a F ∝ p−5 spectrum for comparison.
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Figure 6.4: The spatial injection term used in Antecki et al. [2013] (red curve),
given by equation 5.78, compared to our approximation (blue curve), given by
equation 6.30. This approximation was required in order to minimise any com-
putational issues arising from the use of Heaviside step functions.
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Figure 6.5: The steady state radial profiles at p = 10pI for three different loss
times, as determined numerically. Contrary to the plots obtained analytically, no
Gibbs phenomena is observed.

121



of the profiles reduce with increasing losses. However, this reduction appears to
be more significant numerically compared to Figure 5.6. Again, we assign this
discrepancy to the Gibbs phenomenon.

6.4 Replacing the Spatial Injection Term

As we discussed in Section 5.6, our form of the spatial injection term, namely
that of equation 5.78, was an approximation chosen so as to keep the analytical
solutions intuitive. In this section, we relax this restriction and instead use the
the more accurate spatial injection term for pick-up ions as is given in Chalov
et al. [2004] (equation 10 therein), namely

q1(r) =
βiEnH∞
r2

exp

(
−βiEAU2

rVISM

)
(6.31)

where βiE is the ionisation rate of hydrogen at 1 AU, nH∞ is the hydrogen density
at the outer radius and VISM is the speed of hydrogen relative to the Sun. This
form of spatial injection is shown in Figure 6.7.

For the remainder of this chapter, as we are primarily interested in whether
p−5 spectra can be obtained with this method, we discuss only the momentum
spectra. Figures 6.8 and 6.9 present the resulting spectra at both 0.7R and 0.15R
for various loss times. Note that, as the spatial injection term covers the entirety
of the spatial range, all of the momenta spectra are contained within the injection
zone. We therefore expect less variations between both plots compared to those
of Section 6.3. Below the injection momentum, the spectra once again exhibit
approximate power laws. In both figures, these power law steepen with increasing
loss rates.

Remarkably, above the injection momentum, all spectra observe power laws
with indices very close to −5. The prevalence of the p−5 spectra can be under-
stood by analysing the spatial diffusion term. Recall the spatial diffusion time of
equation 5.2, namely

τS =
3

χβ
τC =

5M2
A

χ
(6.32)

This timescale is comparable to or less than the convection time τC ifMA ≤
√

0.2χ
is satisfied. For example, in the absence of losses (χ = 1), this corresponds to
a very small Mach number (and therefore very strong fluctuations) MA ≤ 0.45.
Therefore, spatial diffusion under pressure balance in the heliosphere typically
has little affect. Hence, we expect the results to be similar to those of Zhang
and Lee [2013], where they also used the concept of pressure balance, but in the
absence of spatial diffusion. Assuming a momentum diffusion coefficient of the
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Figure 6.6: The steady state radial profiles at p = 0.1pI for three different loss
times, as determined numerically. Contrary to the plots obtained analytically, no
Gibbs phenomena is observed.
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Figure 6.7: The pick-up ion spatial injection term, as described in Chalov et al.
[2004] and stated in equation 6.31. Note that this term is only valid up to the
termination shock, which we have taken to be located at 85 AU.
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Figure 6.8: The steady state momentum spectra at r = 0.7R for four different
loss times, as determined numerically by equation 6.27, with an injection term of
the form given by equation 6.31. Each spectra has been normalised to the case
of τL → ∞ in order to better compare the spectral indices. Also plotted is a
F ∝ p−5 spectrum for comparison.
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Figure 6.9: The steady state momentum spectra at r = 0.15R for four different
loss times, as determined numerically by equation 6.27, with an injection term of
the form given by equation 6.31. Each spectra has been normalised to the case
of τL → ∞ in order to better compare the spectral indices. Also plotted is a
F ∝ p−5 spectrum for comparison.
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form D = D0p
2, they used the pressure balance condition to obtain a value for

D0. With this choice of D0, the balance between momentum diffusion and cooling
always lead to a p−5 spectrum. Therefore, we can regard the small amount of
spatial diffusion as a deviating factor from a spectral index of −5. This will
become clearer in the next section when we also consider a Mach number smaller
than that of 1.35.

6.5 Application to the Heliosphere

We now adopt the spatial injection term of equation 6.31 and apply it to the
inner heliosphere and further on. In Section 6.5.1, we extend the spatial range
from 0.01 AU to the termination shock, which we approximate to be located at 85
AU. In Section 6.5.2, we look at the region beyond the termination shock, which
was analysed in Zhang and Schlickeiser [2012] in the absence of spatial diffusion.
In this region, the injection term is well approximated by Rq1(rTS), where R is
once again the compression ratio of the termination shock and rTS = 85 AU is
the location of the shock. In what follows, we adopt the observed value R = 2
Richardson et al. [2008], although the results are not sensitive to this value.

6.5.1 Inner Heliosphere

Motivated by our analysis of Chapter 2, we choose a velocity profile of the form

V(r̃) =

V0

(
r̃

0.03

)
r̂ 0.01 < r̃ < 0.03

V0r̂ 0.03 < r̃ < 85
(6.33)

which is a constant solar wind velocity for the majority of the region. Also, ac-
cording to Zhang and Schlickeiser [2012] (Figure 9 therein), a good approximation
for the loss time by charge exchange is given by

τL(r̃) =


∞ 0.01 < r̃ < 5

103

(
r̃

10

)
τC0 5 < r̃ < 10

103τC0 10 < r̃ < 85

(6.34)

where the large loss time of τL = 103τC0 corresponds to χ ≈ 0.9997.
Figure 6.10 presents the resulting spectra at three different positions for a

Mach number MA = 1.35. As both loss and spatial diffusion times are very long,
these spectra should be very close to those obtained in Zhang and Lee [2013]
where momentum diffusion was balanced only by adiabatic cooling. We therefore

127



obtain as we expect: power laws above the injection momentum with spectral
indices close to −5. Deviations from indices of −5 can only be obtained for
unlikely very small values of MA, corresponding to very strong turbulence - see
Figure 6.11 where we have repeated the process for MA = 0.35.

6.5.2 Beyond the Termination Shock

In this region, we choose the sensible velocity profile

V(r̃) =
V0

R

(
85

r̃

)2

r̂ 85 < r̃ < 200 (6.35)

which, due to its 1/r2 dependence, leads to the probable result of no adiabatic
cooling beyond the termination shock. Once again, motivated by Zhang and
Schlickeiser [2012], a loss time of the form

τL(r̃) = 103τC0 85 < r̃ < 200 (6.36)

is chosen, which again implies a very small loss rate. However, as we have assumed
cooling is unimportant in the heliosphere, momentum diffusion is balanced only
by losses. Adopting a Mach number of MA = 1.35, the values of h(r) defined in
equation 6.7 varies from 0.005 − 0.0118. Therefore, there is a large reduction in
the spatial diffusion coefficient which in turn, according to equation 5.3, leads to a
large increase in the momentum diffusion coefficient. As the momentum diffusion
process now dominates, a p−5 is still easily attained - see Figure 6.12. Also, as
both spatial diffusion and advection are slow compared to momentum diffusion,
these results are not sensitive to a changing of the spatial boundary conditions
to what would be more sensible conditions for this spatial domain than those of
equation 6.29.

We have demonstrated that a p−5 spectrum appears to be a favoured result
for stochastic acceleration under a pressure balance condition in the heliosphere,
including past the termination shock. Any deviations from a spectral index of
−5 require either spatial injection over a small range of the acceleration region
or a rather strong fluctuating field. As neither of these requirements seem likely
for both the inner and outer heliosphere, we conclude that pressure balance is a
likely candidate for explaining the origin of the observed suprathermal tails.
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Figure 6.10: The steady state momentum spectra at three different spatial dis-
tances within the inner heliosphere for the choice of parameters described in
Section 6.5.1, where we have adopted MA = 1.35. Each spectra has been nor-
malised to the case of τL → ∞ in order to better compare the spectral indices.
Also plotted is a F ∝ p−5 spectrum for comparison.
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Figure 6.11: The steady state momentum spectra at three different spatial dis-
tances within the inner heliosphere for the choice of parameters described in
Section 6.5.1, where we have adopted MA = 0.35. Each spectra has been nor-
malised to the case of τL → ∞ in order to better compare the spectral indices.
Also plotted is a F ∝ p−5 spectrum for comparison.
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Figure 6.12: The steady state momentum spectra at three different spatial dis-
tances beyond the termination shock for the choice of parameters described in
Section 6.5.2, where we have adopted MA = 1.35. Note that all three spectra
overlap over the entire range. Each spectra has been normalised to the case of
τL →∞ in order to better compare the spectral indices. Also plotted is a F ∝ p−5

spectrum for comparison.
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Chapter 7

Conclusions and Future Work

Under particular circumstances, according to Chapter 4, stochastic acceleration
can lead to particle acceleration with corresponding power law spectra. However,
Zhang and Lee [2013] have demonstrated that, if the turbulence is composed
of small scale magnetohydrodynamic waves, stochastic acceleration is not fast
enough to overcomes the affect of adiabatic cooling. Instead, we have appealed to
large-scale modes; in particular, fluctuations of a compressible nature. Adopting
a so called “pressure balance” concept, we found that power law spectra with
indices close to −5 naturally arise throughout the heliosphere.

However, in order to obtain the spatial diffusion coefficient of equation 5.7, an
unlikely momentum independent spatial diffusion was assumed. Dropping this
assumption results in a complicated integro-differential equation for the particle
pressure. It would be interesting to see if a workaround could be found to obtain
a spatial diffusion coefficient that is both momentum and spatially dependent
using this notion of pressure balance.

We have also approximated the more exact spatial dependence of the loss time
as found in Zhang and Schlickeiser [2012], Figure 9 therein. However, if we assume
that losses are by charge exchange, then this loss time is also energy (and therefore
momentum) dependent (see Zhang and Schlickeiser [2012], Figure 2 therein).
Once again, this leads to similar problems in adopting the pressure balance notion
as is found with a momentum dependent spatial diffusion coefficient.

Also, again according to Figure 9 of Zhang and Schlickeiser [2012], the Mach
number MA is not spatially independent as we assumed; rather, it varies through-
out the heliosphere. However, as we discovered in Chapter 6, the resulting spectra
are not sensitive to this choice of MA except in unlikely cases of very small val-
ues corresponding to very strong fluctuations. We therefore do no believe the
inclusion of a spatially dependent Mach number will have much affect on our
results.

One particular feature of the suprathermal tail that cannot be explained by
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our theory is that of the observed step feature (see Fahr and Fichtner [2012] -
Figure 1 therein). This sharp drop at the injection momentum has not been
obtained in any of our analyses. However, an application of the pressure balance
notion has lead to the creation of the step feature elsewhere. In particular, this
step-like feature is naturally created by use of a bimodal theory, as is done in
Zhang and Schlickeiser [2012]. Here, they consider regions that alternate between
those that contain compressive waves and those that don’t (see Figure 1 therein).
Assuming a momentum diffusion coefficient of the form D = D0p

2, they adopt
the pressure balance condition in the absence of spatial diffusion in order to
calculate D0. It would interesting to see if a bimodal approach to our work,
namely where we assume a given momentum diffusion coefficient and instead
calculate the spatial diffusion coefficient, could also lead to the creation of this
step feature.

Finally, we have applied this notion of pressure balance to only one particu-
lar branch of turbulence, namely large-scale compressions, in only one particular
setting, namely the heliosphere. An application of this notion to explain other
unresolved cosmic ray phenomena, both within the heliosphere and indeed else-
where, may lead to interesting insights.

We thank the reader for their attention and hope that they have found this
work to be informative and useful in the continued investigation of the origin of
the universal p−5 spectrum.
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Appendix A

The Temperature Dependence of

κ

The thermal conductivity of a gas is approximately given by Phillips [1994]

κ =
1

3
v̄l̄C (A.1)

where v̄ is the mean speed of the particles, l̄ is the mean free path (the average
distance between collisions) and C is the heat capacity per unit volume. Assuming
that the particles attain most of their kinetic energy from thermal interactions,
the particles’ mean speed is related to the temperature of the gas via

v̄ =

√
3kT

m
(A.2)

where k is Boltzmann’s constant. The mean free path l̄ is defined as l̄ = 1/nσ,
where n is the number of particles per unit volume and σ is the collision cross
section. One can roughly estimate this cross section as πr2, where r is the distance
at which the potential energy of the pair under collision is of the same order as
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the thermal energy, i.e.

Ze2

4πε0r
≈ 3

2
kT → r ≈ Ze2

4πε0kT
(A.3)

Upon subbing in these values for v̄ and l̄, we obtain

κ =
C

3πn

√
3kT

m

(
4πε0kT

Ze2

)2

(A.4)

i.e. κ ∝ T 5/2 as required.
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Appendix B

Obtaining Weber and Davis’

Original Solution

We begin with the velocity profile we derived in equation 2.52, namely

ur
dur
dr

=

(
γPA

ρAM
2(γ−1)
A

)(
2

r
+

1

ur

dur
dr

)
− r2Ω2M2

A

(M2
A − 1)2

(
r2
A

r2
− 1

)2 [
2

r
− M2

A

(M2
A − 1)

(
2

r
+

1

ur

dur
dr

)
− 2r2

A

r(r2
A − r2)

]

+ rΩ2

(
M2

A

r2
A

r2
− 1

)2

(M2
A − 1)2

− GM

r2
(B.1)

Rearranging, we obtain

dur
dr

[
ur −

γPA

urρAM
2(γ−1)
A

− r2Ω2M4
A

ur(M2
A − 1)3

(
r2
A

r2
− 1

)2
]

=
2γPA

rρAM
2(γ−1)
A

− GM

r2

− 2rΩ2M2
A

(M2
A − 1)2

(
r2
A

r2
− 1

)2 [
1− M2

A

(M2
A − 1)

− r2
A

(r2
A − r2)

]
+ rΩ2

(
M2

A

r2
A

r2
− 1

)2

(M2
A − 1)2

(B.2)
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Multiplying both sides by (M2
A − 1)3 and rearranging

dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

{(
r2
A

r2
− 1

)2 [
��

��−2M4
A + 2M2

A��
��+2M4
A +

2(M2
A − 1)M2

Ar
2
A

(r2
A − r2)

]

+(M2
A − 1)

(
M2

A

r2
A

r2
− 1

)2
}

+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3 (B.3)

Using equation 2.28 to relate MA to ur and r, we find that

dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

{
2M2

A

(
ur

uAM2
A

− 1

)2

+
2ur
uA

(M2
A − 1)

(
ur

uAM2
A

− 1

)

+(M2
A − 1)

(
ur
uA
− 1

)2
}

+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3 (B.4)

Expanding the first expression on the right hand side

dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

[
�
�
�
�2u2
r

u2
AM

2
A

− 4
ur
uA

+ 2M2
A + 2

u2
r

u2
A

− 2
urM

2
A

uA ��
��

��
−2

u2
r

u2
AM

2
A

+ 2
ur
uA

+

(
urM

2
A

uA
−M2

A −
ur
uA

+ 1

)(
ur
uA
− 1

)]
+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3

(B.5)

Factoring out a (ur/uA − 1) term from this expression
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dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

[(
ur
uA
− 1

)(
2
ur
uA
− 2M2

A

)
+

(
urM

2
A

uA
−M2

A −
ur
uA

+ 1

)(
ur
uA
− 1

)]
+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3 (B.6)

Finally, tidying up, we arrive at

dur
dr

[(
ur −

γPA

urρAM
2(γ−1)
A

)
(M2

A − 1)3 − r2Ω2M4
A

ur

(
r2
A

r2
− 1

)2
]

=

rΩ2

(
ur
uA
− 1

)[
(M2

A + 1)
ur
uA
− 3M2

A + 1

]
+

(
2γPA

rρAM
2(γ−1)
A

− GM

r2

)
(M2

A − 1)3 (B.7)

This is the velocity profile for the radial component of the solar wind that, ne-
glecting what is believed to be a typo, was originally obtained in Weber and Davis
[1967].
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Appendix C

The Derivation of Ptuskin’s

Transport Equation

We begin by separating the plasma velocity into background and fluctuating
quantities, namely V = V0 + δV, where δV � V. Hence, neglecting drifts, the
transport equation in the plasma frame is now

∂f

∂t
+ δV · ∇f = ∇ · κ · ∇f +

(∇ · δV)

3
p
∂f

∂p
(C.1)

Next, we similarly split f into background and fluctuating quantities, i.e. f(x, t, p) =
f0(x, p, t) + δf(x, p, t), where δf � f0. Thus

∂f0

∂t
+
∂δf

∂t
+ δV · ∇f0 + δV · ∇δf

= ∇ · κ · ∇f0 +∇ · κ · ∇δf +
(∇ · δV)

3
p
∂f0

∂p
+

(∇ · δV)

3
p
∂δf

∂p
(C.2)

We now ensemble average, where the fluctuating quantities satisfy < δA >= 0,
< (δA)2 >6= 0

∂f0

∂t
+
��

��
�

<
∂δf

∂t
>+((((

((((< δV · ∇f0 >+ < δV · ∇δf >=< ∇ · κ · ∇f0 >
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+((((
((((

(
< ∇ · κ · ∇δf >+

���
���

���
�

<
(∇ · δV)

3
p
∂f0

∂p
>+ <

(∇ · δV)

3
p
∂δf

∂p
> (C.3)

giving

∂f0

∂t
+ < δV · ∇δf >=< ∇ · κ · ∇f0 > + <

(∇ · δV)

3
p
∂δf

∂p
> (C.4)

where all first order terms have averaged to zero. We now use the following
relation

<
(∇ · δV)

3
p
∂δf

∂p
>=

1

3p2

∂

∂p
< (∇ · δV)p3δf > − < (∇ · δV)δf) > (C.5)

and obtain

∂f0

∂t
+ < δV·∇δf > + < (∇·δV)δf) >=< ∇·κ·∇f0 > +

1

3p2

∂

∂p
< (∇·δV)p3δf >

(C.6)
Subtracting this from equation C.1

∂f

∂t
− ∂f0

∂t
+ δV · ∇f −(((((

(((< δV · ∇δf >−(((((
((((< (∇ · δV)δf) >

= ∇ · κ · ∇f −∇ · κ · ∇f0 +
(∇ · δV)

3
p
∂f

∂p
−
���

���
���

���
��

1

3p2

∂

∂p
< (∇ · δV)p3δf > (C.7)

where we have removed second order terms as there are no zeroth order terms in
this equation. Thus

∂δf

∂t
+ δV · ∇f0 +���

��δV · ∇δf =((((
((∇ · κ · ∇f0 +∇ · κ · ∇δf

−((((((∇ · κ · ∇f0 +
(∇ · δV)

3
p
∂f0
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���

���
��(∇ · δV)

3
p
∂δf
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(C.8)

giving
∂δf

∂t
+ δV · ∇f0 = ∇ · κ · ∇δf +

(∇ · δV)

3
p
∂f0

∂p
(C.9)
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where we have once again removed second order terms. To continue, we Fourier
expand both δf and δV as follows

δf(t, r) =

∫ ∫
dω d3k δ̃f(ω,k) exp(−iωt+ ik · r) (C.10)

δVi(t, r) =

∫ ∫
dω d3k ˜δVi(ω,k) exp(−iωt+ ik · r) (C.11)

Equation (C.9) is thus solved as

δ̃f(w,k) = (−iω + |k|2κ)−1

3∑
i=1

(
−∇if0 + iki

p

3

∂f0

∂p

)
˜δV i(w,k) (C.12)

and hence

δf(t, r) =

∫ ∫
dωd3k(−iω + |k|2κ)−1
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−∇if0 + iki

p

3

∂f0

∂p

)
× ˜δV i(w,k) exp(−iωt+ ik · r) (C.13)

Inserting this solution for the fluctuating component of f back into equation C.6,
we obtain

∂f0

∂t
−∇ · κ · ∇f0 = − <

[∫ ∫
dω′d3k′

3∑
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ik′j
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′,k′) exp(−iω′t+ ik′ · r)

]
p3
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×
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dωd3k(−iω + |k|2κ)−1

3∑
i=1

(
−∇if0 + iki

p

3

∂f0
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(C.14)

giving
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The two point correlation function for homogeneous and isotropic compressible
turbulence is given by Batchelor [1953]

< ˜δVi(w,k) ˜δVj(ω
′,k′) >= S(w, k)

kikj
k2

δ(ω + ω′)δ3(k + k′) (C.16)

where S(ω, k) is the energies density of the turbulence. Thus
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]
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kikj
9p2

∂

∂p

(
p4∂f0

∂p

)](
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kikj
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(C.17)

Using the relation

ikj
3v2

∂

∂p
(p3∇if0) = iki

p

3

∂

∂p
(∇jf0) + ikj∇if0 (C.18)

we obtain

∂f0

∂t
−∇ · κ · ∇f0 =

[∫ ∫
dωd3k(−iω + |k|2κ)−1

3∑
i=1

3∑
j=1

]

×
[
∇i∇jf0 +

kikj
9p2

∂

∂p

(
p4∂f0

∂p

)
+���

��ikj∇if0

](
S(w, k)

kikj
k2

)
(C.19)

where we have used
∫
knd3k = 0 for odd n for a uniform distribution of wavenum-

bers. Multiplying above and below by (iω + k2κ)

∂f0

∂t
−∇ · κ · ∇f0 =

∫ ∫
dω dk4πk2(ω2 + k4κ2)−1(iω + k2κ)

3∑
i=1

3∑
j=1

×
[
∇i∇jf0 +

kikj
9

1

p2

∂

∂p

(
p4∂f0

∂p

)](
S(w, k)

kikj
k2

)
(C.20)

Taking the real part and reverting back to the spacecraft frame, our transport
equation is given by

∂f0

∂t
+ V0 · ∇f0 = ∇ · (κ+ κ′) · ∇f0 +

1

p2

∂

∂p

(
p2D′

∂f0

∂p

)
+

(∇ ·V0)

3
p
∂f0

∂p
(C.21)

where

κ′ =
16πκ

3

∫ ∫
dωdk

k4S(w, k)

ω2 + κ2k4
(C.22)
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D′ =
8πp2κ

9

∫ ∫
dωdk

k4S(w, k)

ω2 + κ2k4
(C.23)
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Appendix D

Analytic Solutions to the

Transport Equation

In what follows, we analytically solve the spherically symmetric transport equa-
tion for a constant speed V0 to determine the evolution of the distribution purely
due to advection, adiabatic cooling, spatial diffusion, momentum diffusion or
losses for the following realistic pre-existing initial distributions

• Mono-energetic source with a spatially Gaussian spread

f0(r, p) =

√
1

2π
exp

[
−(r − r0)2

2

]
δ(p− p0) (D.1)

• A Gaussian spread both spatially and in momentum

f0(r, p) =
1

2π
exp

[
−(r − r0)2

2

]
exp

[
−(p− p0)2

2

]
(D.2)

• A power law in momentum with a spatially Gaussian spread

f0(r, p) =

√
1

2π
exp

[
−(r − r0)2

2

]
p−aH

[
p− 1

4
pmax

]
H

[
3

4
pmax − p

]
(D.3)
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where r0 and p0 are the Gaussian centres, pmax is the maximum momentum
mesh point and H is the Heaviside step function. Plots of each of these initial
functions are shown in Figure D.1. In what follows, unless otherwise stated, we
assume that the distribution vanishes at all four boundaries, a restriction we relax
when looking at solutions of the generalised equation.

D. 1 Solutions to the Linear Advection equa-

tion

Upon retaining only the advection term and neglecting drifts, the spherically
symmetric transport equation in this case takes the form

∂f

∂t
+ V0

∂f

∂r
= 0 (D.4)

This is the well known linear advection equation, the solutions of which are easily
found for any initial distribution. It describes the bulk motion of the initial
distribution at a speed V0, i.e. the initial distribution is swept along at a speed
V0 to a distance V0t in a time t without changing shape. The solution is given by

f(r, p, t) = f0(r − V0t) (D.5)

where f0(r, p) ≡ f(r, p, t = 0) is the initial distribution. In what follows, without
loss of generality, we set the speed to be V0 = 1. For each of the following
three initial distributions, the analytic solution is of course trivial: whatever we
prescribe as f0, the resulting distribution at a later time t will just be the initial
distribution shifted to the right. We will however still present these solutions,
both for a sake of completeness, and because they will be a useful guide for when
we solve the advection equation numerically in Section 3.2.

The resulting distributions after three different times for each of the three
initial distributions are shown in Figures D.2, D.3 and D.4 respectively. As ex-
pected, each of the functions conserve their shape in their temporal evolutions,
translating to the right a distance of V0t in a time of t.
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(a) Mono-energetic source and a Gaussian
distribution in space

(b) Gaussian distribution in both momen-
tum and space

(c) A power law in momentum and a Gaussian distribution in space

Figure D.1: The initial distributions defined by equations D.1, D.2 and D.3 re-
spectively, where we have set r0 = p0 = 7.5, pmax = 15 and the power law index
to a = −3. For all three distributions, each particle has a maximum likelihood of
having a location of r = r0, with the probability of the location of each particle
differing from r0 behaving as a Gaussian.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.2: The linear advection of an initial distribution of a mono-energetic
source and a Gaussian distribution in space given by equation D.1 at three dif-
ferent times, where we have set r0 = p0 = 7.5. The result is a preservation of
the shape of the Gaussian with a shift of the profile to the right spatially, with
the Gaussian centre and all other points moving a distance V0t at a time t later.
For simplicity, we have set V0 = 1. The maximum height of the Gaussian has
been shifted from r = 7.5 to r = 9.5, 12.5 and 15.5 respectively, where the final
maximum is not contained within our mesh.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.3: The linear advection of an initial distribution of both a Gaussian
distribution in momentum and a Gaussian distribution in space given by equation
D.2 at three different times, where we have set r0 = p0 = 7.5. The result is a
preservation of the shape of the 3D Gaussian with a shift of the profile to the right
spatially, with the 3D Gaussian centre and all other points moving a distance V0t
at a time t later. For simplicity, we have set V0 = 1. The maximum height of the
3D Gaussian has been shifted from r = 7.5 to r = 9.5, 12.5 and 15.5 respectively,
where the final maximum is not contained within our mesh.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.4: The linear advection of an initial distribution of a power law in
momentum and a Gaussian distribution in space given by equation D.3 at three
different times, where we have set r0 = 7.5, pmax = 15 and the power law index
to a = −3.. The result is a preservation of the shape of the Gaussian with a shift
of the profile to the right, with the Gaussian centre and all other points moving
a distance at V0t at a time t later. For simplicity, we have set V0 = 1. The
maximum height of the profile has been shifted from r = 7.5 to r = 9.5, 12.5 and
15.5 respectively, where the final maximum is not contained within our mesh.

150



D. 2 Solutions to the Adiabatic Cooling Equa-

tion

Upon retaining only the adiabatic cooling term, the spherically symmetric trans-
port equation reads

∂f

∂t
=

2V0

3r
p
∂f

∂p
(D.6)

Recognising that the momentum dependence is of Cauchy-Euler form, it is sen-
sible to recast the equation in terms of y = ln p, i.e.

∂f

∂t
− 2V0

3r

∂f

∂y
= 0 (D.7)

which, in a sense, makes it a type of variable dependent advection equation. Its
solution is given by

f(r, y, t) = f0

(
r, y +

2V0

3r
t

)
(D.8)

i.e. the initial distribution f0 advects in the log of momentum to lower momenta
at a speed of 2V0/3r (and hence, there is a greater advection in momentum
for smaller values of r). Once again, we set V0 = 1 for simplicity. Plots of the
evolved distributions at three different times for each of the three initial functions
are given in Figures D.5, D.6 and D.7 respectively. The results are as D.8 implies:
an advection in the log of momentum, with a skewing of the initial function due
to the spatial dependence of the advection speed.

D. 3 Solutions to the Spatial Diffusion Equation

Upon retaining only the spatial diffusion term, the spherically symmetric trans-
port equation reads

∂f

∂t
=
κ0

r2

∂

∂r

(
r2∂f

∂r

)
(D.9)

where we have assumed the spatial diffusion coefficient κ(r) = κ0 is independent
of r for simplicity. This equation can of course be reformulated as

∂f

∂t
− 2κ0

r

∂f

∂r
= κ0

∂2f

∂r2
(D.10)
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.5: The adiabatic cooling of an initial distribution of a mono-energetic
source and a Gaussian distribution in space given by equation D.1 at three dif-
ferent times, where we have set r0 = p0 = 7.5. The result is an overall shift of
the profile to lower momenta at a speed of 2V0/3r in the log of momentum. For
simplicity, we have set V0 = 1. Due to the 1/r dependence, the advection is slower
at larger spatial values causing, in a sense, a skewing of the initial function. Note
that we have made the Gaussian finite in momentum to remove any unwanted
computational issues.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.6: The adiabatic cooling of an initial distribution of both a Gaussian
distribution in momentum and a Gaussian distribution in space given by equation
D.2 at three different times, where we have set r0 = p0 = 7.5. The result is an
overall shift of the profile to lower momenta at a speed of 2V0/3r in the log of
momentum. For simplicity, we have set V0 = 1. Due to the 1/r dependence, the
advection is slower at larger spatial values causing, in a sense, a skewing of the
initial function.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.7: The adiabatic cooling of an initial distribution of a power law in
momentum and a Gaussian distribution in space given by equation D.3 at three
different times, where we have set r0 = 7.5, pmax = 15 and the power law index
to a = −3.. The result is an overall shift of the profile to lower momenta at a
speed of 2V0/3r in the log of momentum. For simplicity, we have set V0 = 1. Due
to the 1/r dependence, the advection is slower at larger spatial values causing,
in a sense, a skewing of the initial function. Note that we have made the grid
spacings smaller than in other figures in order to remove any issues with advecting
the Heaviside step functions.
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which, in effect, makes it a type of advection-diffusion equation. From our results
from Section D. 1, and our knowledge that diffusion causes a “spreading” of
a function over time, we expect a diffusive behaviour here also, but with the
diffusing distribution also advecting towards smaller values of r at a speed of
2κ0/r. This equation is analytically solvable using the method of separation of
variables, i.e. we assume that we can write the solution as f(r, t) = R(r)T (t).
Inserting this into equation D.10, we obtain

R
dT

dt
= κ0T

d2R

dr2
+

2κ0

r
T
dR

dr
(D.11)

Dividing across by κ0RT

1

κ0T

dT

dt
=

1

R

d2R

dr2
+

2

rR

dR

dr
(D.12)

As the left hand side is only dependent on t, and the right hand side is only
dependent on r, both sides must equal to a constant independent of both t and
r which, for convenience, we call −λ. Hence, upon rearranging, we obtain two
ordinary differential equations

dT

dt
+ λκ0T = 0 (D.13)

d2R

dr2
+

2

r

dR

dr
+ λR = 0 (D.14)

The solution to equation D.13 is trivially found upon integrating to be

T (t) = Ae−κ0λt (D.15)

for some constant A to be determined by the initial condition. The general
solution to D.14 is given by

R(r) =
B

r
cos(
√
λr) +

C

r
sin(
√
λr) (D.16)

for constants B and C which we determine from the boundary conditions. Rather
than using a vanishing boundary at r = 0, due to the 1/r dependence in D.16
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and our knowledge of the distribution advecting towards r = 0, we relax this
condition and instead only ask that R(r) remain finite at the lower boundary.
Recalling that we are still using a vanishing boundary at rmax, we find that

R(0) = finite→ B = 0 (D.17)

R(rmax) = 0→ C

rmax
sin(
√
λrmax) = 0→ λn =

(
πn

rmax

)2

n = 1, 2, . . . (D.18)

Thus, the full solution is now

f(r, t) =
∑
n

Dn

r
sin

(
πn

rmax
r

)
exp

[
−κ0

(
πn

rmax

)2

t

]
(D.19)

To determine the Dn coefficients, we will use the relation between the initial
distribution and these coefficients

f(r, 0) ≡ f0 =
∑
n

Dn

r
sin

(
πn

rmax
r

)
(D.20)

as well as the orthogonality of the sine function as follows

∫ rmax

0

rf0 sin

(
πn

rmax
r

)
dr =

∫ rmax

0

∑
m

Dm sin

(
πm

rmax
r

)
sin

(
πn

rmax
r

)
dr

=
∑
m

∫ rmax

0

Dm sin

(
πm

rmax
r

)
sin

(
πn

rmax
r

)
dr = Dn

∫ rmax

0

sin2

(
πn

rmax
r

) (D.21)

where we have recognised that the summations of the integrals all vanish unless
m = n. Using the identity sin2 x = 1

2
(1− cos 2x), we obtain

∫ rmax

0

sin2

(
πn

rmax
r

)
dr =

[
r

2
− rmax

4πn
sin2

(
2πn

rmax
r

)]rmax

0

=
rmax

2
− rmax

4πn
sin2

(
2πn

rmax
rmax

)
=
rmax

2

(D.22)
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Finally, inserting into and dividing, we obtain for the coefficients

Dn =
2

rmax

∫ rmax

0

rf0 sin

(
πn

rmax
r

)
dr (D.23)

and hence the general solution is given by equation D.19 with the coefficients Dn

given by equation D.23. The first 25 values of Dn are shown in Table D.1 for

f0(r) = rmax

2
exp

[
− (r−r0)2

2

]
with r0 = 7.5 and rmax = 15. Plots of the solutions

given by D.19 are shown in Figure D.8, D.9 and D.10 for each of the three initial
distributions at three different times, where we have assumed that κ0 = 1. As
the spatial dependence of these functions are the same in each of the cases, we
obtain as we expected for all three situations: the distributions gradually spatially
diffuse while also spatially advecting to the left.

n Dn n Dn n Dn n Dn n Dn

1 18.3919 6 −1.4302 11 −1.3232 16 0.0306 21 0.0012
2 −0.9618 7 −6.4183 12 0.2677 17 0.0332 22 −0.0003
3 −15.4321 8 1.0319 13 0.4617 18 −0.0077 23 −0.0002
4 1.4785 9 3.1814 14 −0.100 19 −0.0068 24 0.0000
5 10.8648 10 −0.5856 15 −0.1352 20 0.0016 25 0.0000

Table D.1: The first 25 values of the coefficients Dn given by D.23
correct to four decimal places. The initial distribution f0 is taken as

f0(r) = rmax

2
exp

[
− (r−r0)2

2

]
with r0 = 7.5 and rmax = 15.

D. 4 Solutions to the Momentum Diffusion Equa-

tion

Upon retaining only the momentum diffusion term, the transport equation in this
case takes the form

∂f

∂t
=

1

p2

∂

∂p

(
p2D

∂f

∂p

)
(D.24)

As this is the same form of equation as in the previous section, rather than
repeating a similar approach to solving it, we instead use this section to reproduce
a solution to it that was found in Jokipii and Lee [2010]. As this is one of
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.8: The spherically symmetric spatial diffusion of an initial distribution of
a mono-energetic source and a Gaussian distribution in space given by equation
D.1 at three different times for a constant spatial diffusion coefficient κ0 = 1,
where we have set r0 = p0 = 7.5 and rmax = 15. The evolution is governed
by D.19 with the coefficients Dn given by D.23 (see Table D.1) , where we have
terminated the summation after 25 terms. The result is a spreading out of the
Gaussian along with a shift of the profile to the left spatially.

158



(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.9: The spherically symmetric spatial diffusion of an initial distribution of
both a Gaussian distribution in momentum and a Gaussian distribution in space
given by equation D.2 at three different times for a constant spatial diffusion
coefficient κ0 = 1, where we have set r0 = p0 = 7.5 and rmax = 15. The evolution
is governed by D.19 with the coefficients Dn given by D.23 (see Table D.1) , where
we have terminated the summation after 25 terms. The result is a spreading out
of the Gaussian along with a shift of the profile to the left spatially.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.10: The spherically symmetric spatial diffusion of an initial distribution
of a power law in momentum and a Gaussian distribution in space given by
equation D.3 at three different time for a constant spatial diffusion coefficient
κ0 = 1, where we have set r0 = 7.5, pmax = 15 and the power law index to
a = −3. The evolution is governed by D.19 with the coefficients Dn given by
D.23 (see Table D.1) , where we have terminated the summation after 25 terms.
The result is a spreading out of the Gaussian along with a shift of the profile to
the left spatially.
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the papers that focuses on the primary topic of this work, we frequently make
reference to it in future chapters, and thus it would be beneficial if we were able
to reproduce some of the results. The primary features of their approach are

• Rather than using a constant diffusion coefficient, they instead defined it
as D = D0p

2. As we will see in Chapters 4 & 5, the momentum diffu-
sion coefficient commonly takes the forms D ∝ p2 and D ∝ p2/κ. Thus,
for a momentum independent spatial diffusion coefficient κ, a momentum
diffusion coefficient D = D0p

2 is a common occurrence.

• Rather than using a finite domain in momentum, they chose instead to have
an infinite domain. This would of course not be a sensible treatment for
the spatial boundaries of the last section: a feature is usually to be found
at one if not both of the boundaries e.g. a shock or transition. However,
there are situations where there are no bounds to the possible momentum
values a particle may have and hence, in this section, we decide to explore
that option.

• Their initial distribution is similar to that given by D.1, namely a delta
spike in momentum at p = p0. Thus, we look for solutions with this initial
condition.

Hence, after separating the diffusion term, the equation we solve is

∂f

∂t
− 4D0p

∂f

∂p
= D0p

2∂
2f

∂p2
(D.25)

which is, as in the previous section, a type of diffusion-advection equation. Once
again, as in the advection equation, we recognise that the momentum dependence
is of Cauchy-Euler form and, upon recasting in terms of y = ln p, we obtain

∂f

∂t
− 3D0

∂f

∂y
= D0

∂2f

∂y2
(D.26)

To simplify this even further, we define

F (y, t) = exp

(
3y

2
+

9D0t

4

)
f(y, t) (D.27)
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The reasoning behind this introduction of the function F (y, t) is that, upon in-
serting in D.27 into D.26, we arrive at

∂F

∂t
= D0

∂2F

∂y2
(D.28)

An equation of this form is known as a one dimensional diffusion equation (or
a heat equation as, if F refers to temperature and y space, it describes the
spreading out of temperature over time - see Crank et al. [1947]). We can once
again use the separation of variables technique to solve this equation. However,
upon applying this method, we find that no solution can be found. In other
words, the solution to the momentum diffusion equation under these particular
conditions cannot be separated into the form f(p, t) = P (p)T (t). Instead, we use
another technique commonly used to solve diffusive-type equations, namely that
of Fourier transforms, similar to that used in the quasilinear approach of Section
3.1 (for a review, see Sneddon [1995]). Defining the Fourier transform of F (y, t)
as

F̂ (k, t) =

∫ ∞
−∞

F (y, t)e−ikydy (D.29)

we find that the equivalent equation for F̂ (k, t) is

∂F̂

∂t
+D0k

2F̂ = 0 (D.30)

with solution
F̂ (k, t) = F̂ (k, 0)e−D0k2t (D.31)

Applying an inverse Fourier transport results in

F (y, t) =
1√

4πD0t

∫ ∞
−∞

exp

[
−(y − z)2

4D0t

]
F (z, 0)dz (D.32)

Hence the solution, in terms of y = ln p and given by D.27, is

f(y, t) =
1√

4πD0t
exp

(
−3

2
y

)
exp

(
−9D0

4
t

)∫ ∞
−∞

exp

[
−(y − z)2

4D0t

]
e3z/2f0(z)dz

(D.33)
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Thus, the full solution for the initial distribution given by equation D.1 is

f(p, r, t) =
1

p0

√
8π2D0t

(
p

p0

)−3/2

exp

(
−9D0

4
t

)
exp

[
−(ln p/p0)2

4D0t

]
× exp

[
−(r − r0)2

2

]
(D.34)

which agrees with the solution found by Jokipii and Lee [2010] for a similar pre-
existing source term. Plots of this function are given in Figure D.11. The results
are once again as expected: a diffusion in momentum with an advection of the
diffusion centre towards lower momenta. The advection in this case is slow due
to the ln p dependence of the advection speed.

D. 5 Solutions to the Catastrophic Loss Equa-

tion

Finally, upon retaining only the loss term, the transport equation in this case
takes the form

∂f

∂t
= − f

τL
(D.35)

This equation is trivial to solve: upon integration, the solution is given by

f(r, p, t) = f0(r, p)e−t/τL (D.36)

i.e. the original distribution exponentially decays temporally. Plots of the func-
tions are given in Figures D.12, D.13 and D.14 for each of the initial distributions
at three different times, where we have taken τL = rmax/V0. As can be seen, the
evolution of the functions are as D.36 implies: an exponential reduction in the
amplitude of each of the initial distributions over time.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.11: The momentum diffusion of an initial distribution of a mono-
energetic source and a Gaussian distribution in space given by equation D.1 at
three different times for a diffusion coefficient of the form D = D0p

2, where we
have set D0 = 0.01 and r0 = p0 = 7.5. The evolution is governed by D.34 for this
particular choice of initial function. The result is a “spreading” out in momentum
along with a (slow) shift of the profile to lower momenta. Note that while we
have only shown a finite grid in momenta for visual purposes, the solution was
instead calculated on an infinite grid.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.12: The catastrophic loss of an initial distribution of a mono-energetic
source and a Gaussian distribution in space given by equation D.1 at three dif-
ferent times, where we have set r0 = p0 = 7.5. The result is a preservation of
the location of the Gaussian with a reduction in its amplitude. The loss time has
been set to τL = rmax/V0, where rmax = 15 and V0 = 1. The amplitude of the
Gaussian has been reduced to 87.52%, 71.65% and 58.66% of its initial amplitude
respectively.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.13: The catastrophic loss of an initial distribution of both a Gaussian
distribution in momentum and a Gaussian distribution in space given by equation
D.2 at three different times, where we have set r0 = p0 = 7.5. The result is a
preservation of the location of the Gaussian with a reduction in its amplitude.
The loss time has been set to τL = rmax/V0, where rmax = 15 and V0 = 1. The
amplitude of the Gaussian has been reduced to 87.52%, 71.65% and 58.66% of
its initial amplitude respectively.
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(a) t = 0 (b) t = 2

(c) t = 5 (d) t = 8

Figure D.14: The catastrophic loss of an initial distribution of a power law in
momentum and a Gaussian distribution in space given by equation D.3 at three
different times, where we have set r0 = 7.5 and the power law index to a = −3.
The result is a preservation of the location of the Gaussian with a reduction in
its amplitude. The loss time has been set to τL = rmax/V0, where rmax = 15 and
V0 = 1. The amplitude of the Gaussian has been reduced to 87.52%, 71.65% and
58.66% of its initial amplitude respectively.
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Appendix E

Particle Acceleration by

Turbulent Modes

E. 1 Acceleration by Small-Scale Incompressible

and Compressible Modes

In this section, we discuss two mechanisms that were analysed in Jokipii and Lee
[2010] in order to to determine whether they could create the observed tail. First,
as an example of stochastic acceleration by small-scale incompressible turbulence,
we consider the investigation of Bogdan et al. [1991]. Here, they considered the
small-scale waves to consist of right-hand and left-hand circularised transverse
hydromagnetic waves traveling both parallel and anti-parallel to the magnetic
field. A quasi-linear approach was taken self-consistently, i.e. with the inclusion
of the back reaction of the energetic particles on the turbulence. A momentum
diffusion-type transport equation was obtained with coefficient

D = π

(
qVA
mc

)2 ∫ 1

−1

dµ
1− µ2

v|µ|
I+(kr)I−(kr)

I+(kr) + I−(kr)
(E.1)

where µ is the pitch-angle cosine (the angle between the particle’s velocity and the
magnetic field), VA is the Alfvén speed, kr is the cyclotron-resonant wavenumber
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and I+(−)(k) is the intensity of waves propagating parallel (anti-parallel) to the
magnetic field.

An example of acceleration by small scale compressible turbulence is given
in Lee and Voelk [1975]. Here, they considered stochastic acceleration in the
presence of small-scale magnetosonic waves traveling at an oblique angle to the
magnetic field. Once again, a quasi-linear procedure was used, resulting in a
momentum diffusion equation with coefficient

D ≈ k2
zv

4
⊥

ω

(
δB

B0

)2

(E.2)

where the z-direction and “⊥” correspond to motion parallel and perpendicular
to the background magnetic field respectively.

However, there is no clear indication as to why momentum diffusion equa-
tions with diffusion coefficients given by equations E.1 and E.2 should lead to a
universal p−5 spectrum. Moreover, Jokipii and Lee [2010] also calculated that,
in the heliosphere, acceleration in the presence of each of these wave modes is
slower than that of acceleration in the presence of large-scale compressible modes.
Several other authors, e.g. Zhang and Lee [2013] and Antecki et al. [2013], also
agree that stochastic acceleration by small-scale waves is unimportant in the he-
liosphere. Therefore, we also rule out stochastic acceleration by small-scale waves
as an explanation for the suprathermal tail.

E. 2 Acceleration by Large-Scale Incompressible

Modes

In this section, we consider particle acceleration by shear flows. While variations
of shear acceleration has been developed by numerous authors (e.g. Earl et al.
[1988] and Rieger and Duffy [2006]), shear acceleration in the presence of large-
scale incompressible turbulence has been considered only recently Ohira [2013].
We now discuss this paper, focusing on whether it could explain the suprathermal
tail. Neglecting spatial transport, an appropriate transport equation describing
the evolution of an isotropic particle distribution function in the plasma rest
frame under shear flow in the presence of turbulence is given by

∂f

∂t
=

1

p2

∂

∂p

(
κΓ

p4

v2

∂f

∂p

)
+

1

p2

∂

∂p

(
κ
DδVi
Dt

DδVi
Dt

p4

v2

∂f

∂p

)
(E.3)
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where

Γ =
1

5

(
∂δVi
∂xj

∂δVj
∂xi

+
∂δVi
∂xj

∂δVi
∂xj

)
− 2

15

∂δVi
∂xi

∂δVj
∂xj

(E.4)

and κ is the spatial diffusion coefficient which, for isotropic diffusion, is given by
κ = τ(p)v2/3, where τ(p) is the mean scattering time. Applying a quasi-linear
analysis, where we assume that the turbulence is incompressible (∂δVi/∂xi = 0)
and assume a two point correlation function of the form

〈δVi(x)δVj(x
′)〉 =

∫
d3k

(2π)3
S(k)

(
δij −

kikj
k2

)
eik·(x−x

′) (E.5)

corresponding to homogeneous and isotropic compressional turbulence, we once
again obtain a momentum diffusion type equation

∂f

∂t
=

1

p2

∂

∂p

(
p2D(p)

∂f

∂p

)
(E.6)

with a momentum diffusion coefficient

D =
2

9
p2τ(p)

∫
d3k

(2π)3
S(k)k2

(
3

5
+
〈δV 2〉
v2

)
(E.7)

Assuming that the speed of the fluctuations is a lot less than the speed of the
particles (〈δV 2〉 � v2) and that the momentum dependence of the scattering
time is in the form of a power law (τ(p) = τ0p̃

α, where p̃ = p/p0 is the normalised
momentum), the momentum diffusion coefficient is simplified to a power law given
by

D = D0p̃
2+β (E.8)

where β = α for a monochromatic turbulence spectrum (S(k) ∝ δ(k − k0)) and
β = −α/3 for a Kolmogorov spectrum (S(k) ∝ k−11/3). The solution to equation
E.6 with a diffusion coefficient given by equation E.8 for an initial mono-energetic
distribution (f(p, t→∞) = Q0(p̃− 1)) is given by (see Rieger and Duffy [2006])

f(p̃, t̃) =
Q0

|β|D̃0t̃
p̃−(3+β)/2 exp

(
−1 + p̃β

β2D̃0t̃

)
I|1+3/β|

[
p̃−β/2

β2D̃t̃

]
(E.9)
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for β 6= 0 and, as we have already determined in Section D. 4, is given by

f(p, r, t) =
Q0√
4πD̃0t̃

p̃−3/2 exp

(
−9D̃0

4
t̃

)
exp

[
−(ln p̃)2

4D̃0t̃

]
(E.10)

for β = 0, where t̃ = t/τ0, D̃0 = D0/(p
2
0τ
−1
0 ) and Iν is the modified Bessel function

of the first kind. Again, while power law spectra are obtained for long times, a
universal p−5 spectrum seems unlikely to be created by this mechanism.
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